Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Life Sciences

Data Publication With The Structural Biology Data Grid Supports Live Analysis, Peter A. Meyer, Stephanie Socias, Jason Key, Elizabeth Ransey, Emily C. Tjon, Alejandro Buschiazzo, Ming Lei, Chris Botka, James Withrow, David Neau, Kanagalaghatta Rajashankar, Karen S. Anderson, Chung-I Chang, Walter J. Chazin, Kevin D. Corbett, Michael S. Cosgrove, Sean Crosson, Sirano Dhe-Paganon, Enrico Di Cera, Catherine L. Drennan, Michael J. Eck, Brandt F. Eichman, Qing R. Fan, Adrian R. Ferre-D’Amare, J. Christopher Fromme, K. Christopher Garcia, Rachelle Gaudet, Peng Gong, Stephen C. Harrison, Ekaterina E. Heldwein, Zongchao Jia, Robert J. Keenan, Andrew C. Kruse, Marc Kvansaku, Jason S. Mclellan Mar 2016

Data Publication With The Structural Biology Data Grid Supports Live Analysis, Peter A. Meyer, Stephanie Socias, Jason Key, Elizabeth Ransey, Emily C. Tjon, Alejandro Buschiazzo, Ming Lei, Chris Botka, James Withrow, David Neau, Kanagalaghatta Rajashankar, Karen S. Anderson, Chung-I Chang, Walter J. Chazin, Kevin D. Corbett, Michael S. Cosgrove, Sean Crosson, Sirano Dhe-Paganon, Enrico Di Cera, Catherine L. Drennan, Michael J. Eck, Brandt F. Eichman, Qing R. Fan, Adrian R. Ferre-D’Amare, J. Christopher Fromme, K. Christopher Garcia, Rachelle Gaudet, Peng Gong, Stephen C. Harrison, Ekaterina E. Heldwein, Zongchao Jia, Robert J. Keenan, Andrew C. Kruse, Marc Kvansaku, Jason S. Mclellan

Dartmouth Scholarship

Access to experimental X-ray diffraction image data is fundamental for validation and reproduction of macromolecular models and indispensable for development of structural biology processing methods. Here, we established a diffraction data publication and dissemination system, Structural Biology Data Grid (SBDG; data.sbgrid.org), to preserve primary experimental data sets that support scientific publications. Data sets are accessible to researchers through a community driven data grid, which facilitates global data access. Our analysis of a pilot collection of crystallographic data sets demonstrates that the information archived by SBDG is sufficient to reprocess data to statistics that meet or exceed the quality of the …


Trip: Tracking Rhythms In Plants, An Automated Leaf Movement Analysis Program For Circadian Period Estimation, Kathleen Greenham, Ping Lou, Sara E. Remsen, Hany Farid, C Robertson Mcclung May 2015

Trip: Tracking Rhythms In Plants, An Automated Leaf Movement Analysis Program For Circadian Period Estimation, Kathleen Greenham, Ping Lou, Sara E. Remsen, Hany Farid, C Robertson Mcclung

Dartmouth Scholarship

Background: A well characterized output of the circadian clock in plants is the daily rhythmic movement of leaves. This process has been used extensively in Arabidopsis to estimate circadian period in natural accessions as well as mutants with known defects in circadian clock function. Current methods for estimating circadian period by leaf movement involve manual steps throughout the analysis and are often limited to analyzing one leaf or cotyledon at a time.

Methods: In this study, we describe the development of TRiP (Tracking Rhythms in Plants), a new method for estimating circadian period using a motion estimation algorithm that can …


Derivation Of A Novel Efficient Supervised Learning Algorithm From Cortical-Subcortical Loops, Ashok Chandrashekar, Richard Granger Jan 2012

Derivation Of A Novel Efficient Supervised Learning Algorithm From Cortical-Subcortical Loops, Ashok Chandrashekar, Richard Granger

Dartmouth Scholarship

Although brain circuits presumably carry out powerful perceptual algorithms, few instances of derived biological methods have been found to compete favorably against algorithms that have been engineered for specific applications. We forward a novel analysis of a subset of functions of cortical-subcortical loops, which constitute more than 80% of the human brain, thus likely underlying a broad range of cognitive functions. We describe a family of operations performed by the derived method, including a non-standard method for supervised classification, which may underlie some forms of cortically dependent associative learning. The novel supervised classifier is compared against widely used algorithms for …


A Subgroup Algorithm To Identify Cross-Rotation Peaks Consistent With Non-Crystallographic Symmetry, Ryan H. Lilien, Chris Bailey-Kellogg, Amy C. Anderson, Bruce R. Donald Mar 2004

A Subgroup Algorithm To Identify Cross-Rotation Peaks Consistent With Non-Crystallographic Symmetry, Ryan H. Lilien, Chris Bailey-Kellogg, Amy C. Anderson, Bruce R. Donald

Dartmouth Scholarship

Molecular replacement (MR) often plays a prominent role in determining initial phase angles for structure determination by X-ray crystallography. In this paper, an efficient quaternion-based algorithm is presented for analyzing peaks from a cross-rotation function in order to identify model orientations consistent with proper non-crystallographic symmetry (NCS) and to generate proper NCS-consistent orientations missing from the list of cross-rotation peaks. The algorithm, CRANS, analyzes the rotation differences between each pair of cross-rotation peaks to identify finite subgroups. Sets of rotation differences satisfying the subgroup axioms correspond to orientations compatible with the correct proper NCS. The CRANS algorithm was first …