Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 15 of 15

Full-Text Articles in Life Sciences

From Deep Mutational Mapping Of Allosteric Protein Landscapes To Deep Learning Of Allostery And Hidden Allosteric Sites: Zooming In On “Allosteric Intersection” Of Biochemical And Big Data Approaches, Gennady M. Verkhivker, Mohammed Alshahrani, Grace Gupta, Sian Xiao, Peng Tao Apr 2023

From Deep Mutational Mapping Of Allosteric Protein Landscapes To Deep Learning Of Allostery And Hidden Allosteric Sites: Zooming In On “Allosteric Intersection” Of Biochemical And Big Data Approaches, Gennady M. Verkhivker, Mohammed Alshahrani, Grace Gupta, Sian Xiao, Peng Tao

Mathematics, Physics, and Computer Science Faculty Articles and Research

The recent advances in artificial intelligence (AI) and machine learning have driven the design of new expert systems and automated workflows that are able to model complex chemical and biological phenomena. In recent years, machine learning approaches have been developed and actively deployed to facilitate computational and experimental studies of protein dynamics and allosteric mechanisms. In this review, we discuss in detail new developments along two major directions of allosteric research through the lens of data-intensive biochemical approaches and AI-based computational methods. Despite considerable progress in applications of AI methods for protein structure and dynamics studies, the intersection between allosteric …


Dissecting Mutational Allosteric Effects In Alkaline Phosphatases Associated With Different Hypophosphatasia Phenotypes: An Integrative Computational Investigation, Fei Xiao, Ziyun Zhou, Xingyu Song, Mi Gan, Jie Long, Gennady M. Verkhivker, Guang Hu Mar 2022

Dissecting Mutational Allosteric Effects In Alkaline Phosphatases Associated With Different Hypophosphatasia Phenotypes: An Integrative Computational Investigation, Fei Xiao, Ziyun Zhou, Xingyu Song, Mi Gan, Jie Long, Gennady M. Verkhivker, Guang Hu

Mathematics, Physics, and Computer Science Faculty Articles and Research

Hypophosphatasia (HPP) is a rare inherited disorder characterized by defective bone mineralization and is highly variable in its clinical phenotype. The disease occurs due to various loss-of-function mutations in ALPL, the gene encoding tissue-nonspecific alkaline phosphatase (TNSALP). In this work, a data-driven and biophysics-based approach is proposed for the large-scale analysis of ALPL mutations-from nonpathogenic to severe HPPs. By using a pipeline of synergistic approaches including sequence-structure analysis, network modeling, elastic network models and atomistic simulations, we characterized allosteric signatures and effects of the ALPL mutations on protein dynamics and function. Statistical analysis of molecular features computed for the …


Functional Morphology Of Gliding Flight Ii. Morphology Follows Predictions Of Gliding Performance, Jonathan Rader, Tyson L. Hedrick, Yanyan He, Lindsay D. Waldrop Sep 2020

Functional Morphology Of Gliding Flight Ii. Morphology Follows Predictions Of Gliding Performance, Jonathan Rader, Tyson L. Hedrick, Yanyan He, Lindsay D. Waldrop

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

The evolution of wing morphology among birds, and its functional consequences, remains an open question, despite much attention. This is in part because the connection between form and function is difficult to test directly. To address this deficit, in prior work we used computational modeling and sensitivity analysis to interrogate the impact of altering wing aspect ratio, camber, and Reynolds number on aerodynamic performance, revealing the performance landscapes that avian evolution has explored. In the present work, we used a dataset of three-dimensionally scanned bird wings coupled with the performance landscapes to test two hypotheses regarding the evolutionary diversification of …


Functional Morphology Of Gliding Flight I. Modeling Reveals Distinct Performance Landscapes Based On Soaring Strategies, Lindsay D. Waldrop, Yanyan He, Tyson L. Hedrick, Jonathan Rader Aug 2020

Functional Morphology Of Gliding Flight I. Modeling Reveals Distinct Performance Landscapes Based On Soaring Strategies, Lindsay D. Waldrop, Yanyan He, Tyson L. Hedrick, Jonathan Rader

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

The physics of flight influences the morphology of bird wings through natural selection on flight performance. The connection between wing morphology and performance is unclear due to the complex relationships between various parameters of flight. In order to better understand this connection, we present a holistic analysis of gliding flight that preserves complex relationships between parameters. We use a computational model of gliding flight, along with analysis by uncertainty quantification, to 1) create performance landscapes of gliding based on output metrics (maximum lift-to-drag ratio, minimum gliding angle, minimum sinking speed, lift coefficient at minimum sinking speed); and 2) predict what …


Allosteric Regulation At The Crossroads Of New Technologies: Multiscale Modeling, Networks, And Machine Learning, Gennady M. Verkhivker, Steve Agajanian, Guang Hu, Peng Tao Jul 2020

Allosteric Regulation At The Crossroads Of New Technologies: Multiscale Modeling, Networks, And Machine Learning, Gennady M. Verkhivker, Steve Agajanian, Guang Hu, Peng Tao

Mathematics, Physics, and Computer Science Faculty Articles and Research

Allosteric regulation is a common mechanism employed by complex biomolecular systems for regulation of activity and adaptability in the cellular environment, serving as an effective molecular tool for cellular communication. As an intrinsic but elusive property, allostery is a ubiquitous phenomenon where binding or disturbing of a distal site in a protein can functionally control its activity and is considered as the “second secret of life.” The fundamental biological importance and complexity of these processes require a multi-faceted platform of synergistically integrated approaches for prediction and characterization of allosteric functional states, atomistic reconstruction of allosteric regulatory mechanisms and discovery of …


De Novo Sequencing And Analysis Of Salvia Hispanica Tissue-Specific Transcriptome And Identification Of Genes Involved In Terpenoid Biosynthesis, James Wimberley, Joseph Cahill, Hagop S. Atamian Mar 2020

De Novo Sequencing And Analysis Of Salvia Hispanica Tissue-Specific Transcriptome And Identification Of Genes Involved In Terpenoid Biosynthesis, James Wimberley, Joseph Cahill, Hagop S. Atamian

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Salvia hispanica (commonly known as chia) is gaining popularity worldwide as a healthy food supplement due to its low saturated fatty acid and high polyunsaturated fatty acid content, in addition to being rich in protein, fiber, and antioxidants. Chia leaves contain plethora of secondary metabolites with medicinal properties. In this study, we sequenced chia leaf and root transcriptomes using the Illumina platform. The short reads were assembled into contigs using the Trinity software and annotated against the Uniprot database. The reads were de novo assembled into 103,367 contigs, which represented 92.8% transcriptome completeness and a diverse set of Gene Ontology …


Integration Of Random Forest Classifiers And Deep Convolutional Neural Networks For Classification And Biomolecular Modeling Of Cancer Driver Mutations, Steve Agajanian, Odeyemi Oluyemi, Gennady M. Verkhivker Jun 2019

Integration Of Random Forest Classifiers And Deep Convolutional Neural Networks For Classification And Biomolecular Modeling Of Cancer Driver Mutations, Steve Agajanian, Odeyemi Oluyemi, Gennady M. Verkhivker

Mathematics, Physics, and Computer Science Faculty Articles and Research

Development of machine learning solutions for prediction of functional and clinical significance of cancer driver genes and mutations are paramount in modern biomedical research and have gained a significant momentum in a recent decade. In this work, we integrate different machine learning approaches, including tree based methods, random forest and gradient boosted tree (GBT) classifiers along with deep convolutional neural networks (CNN) for prediction of cancer driver mutations in the genomic datasets. The feasibility of CNN in using raw nucleotide sequences for classification of cancer driver mutations was initially explored by employing label encoding, one hot encoding, and embedding to …


Allosteric Mechanism Of The Circadian Protein Vivid Resolved Through Markov State Model And Machine Learning Analysis, Hongyu Zhou, Zheng Dong, Gennady M. Verkhivker, Brian D. Zoltowski, Peng Tao Feb 2019

Allosteric Mechanism Of The Circadian Protein Vivid Resolved Through Markov State Model And Machine Learning Analysis, Hongyu Zhou, Zheng Dong, Gennady M. Verkhivker, Brian D. Zoltowski, Peng Tao

Mathematics, Physics, and Computer Science Faculty Articles and Research

The fungal circadian clock photoreceptor Vivid (VVD) contains a photosensitive allosteric light, oxygen, voltage (LOV) domain that undergoes a large N-terminal conformational change. The mechanism by which a blue-light driven covalent bond formation leads to a global conformational change remains unclear, which hinders the further development of VVD as an optogenetic tool. We answered this question through a novel computational platform integrating Markov state models, machine learning methods, and newly developed community analysis algorithms. Applying this new integrative approach, we provided a quantitative evaluation of the contribution from the covalent bond to the protein global conformational change, and proposed an …


Automating Data Analysis For Two-Dimensional Gas Chromatography/Time-Of-Flight Mass Spectrometry Non-Targeted Analysis Of Comparative Samples, Ivan A. Titaley, O. Maduka Ogba, Leah Chibwe, Eunha Hoh, Paul H.-Y. Cheong, Staci L. Massey Simonich Feb 2018

Automating Data Analysis For Two-Dimensional Gas Chromatography/Time-Of-Flight Mass Spectrometry Non-Targeted Analysis Of Comparative Samples, Ivan A. Titaley, O. Maduka Ogba, Leah Chibwe, Eunha Hoh, Paul H.-Y. Cheong, Staci L. Massey Simonich

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Non-targeted analysis of environmental samples, using comprehensive two‐dimensional gas chromatography coupled with time-of-flight mass spectrometry (GC × GC/ToF-MS), poses significant data analysis challenges due to the large number of possible analytes. Non-targeted data analysis of complex mixtures is prone to human bias and is laborious, particularly for comparative environmental samples such as contaminated soil pre- and post-bioremediation. To address this research bottleneck, we developed OCTpy, a Python™ script that acts as a data reduction filter to automate GC × GC/ToF-MS data analysis from LECO® ChromaTOF® software and facilitates selection of analytes of interest based on peak area …


Atomistic Simulations And Network-Based Modeling Of The Hsp90-Cdc37 Chaperone Binding With Cdk4 Client Protein: A Mechanism Of Chaperoning Kinase Clients By Exploiting Weak Spots Of Intrinsically Dynamic Kinase Domains, John Czemeres, Kurt Buse, Gennady M. Verkhivker Dec 2017

Atomistic Simulations And Network-Based Modeling Of The Hsp90-Cdc37 Chaperone Binding With Cdk4 Client Protein: A Mechanism Of Chaperoning Kinase Clients By Exploiting Weak Spots Of Intrinsically Dynamic Kinase Domains, John Czemeres, Kurt Buse, Gennady M. Verkhivker

Mathematics, Physics, and Computer Science Faculty Articles and Research

A fundamental role of the Hsp90 and Cdc37 chaperones in mediating conformational development and activation of diverse protein kinase clients is essential in signal transduction. There has been increasing evidence that the Hsp90-Cdc37 system executes its chaperoning duties by recognizing conformational instability of kinase clients and modulating their folding landscapes. The recent cryo-electron microscopy structure of the Hsp90-Cdc37- Cdk4 kinase complex has provided a framework for dissecting regulatory principles underlying differentiation and recruitment of protein kinase clients to the chaperone machinery. In this work, we have combined atomistic simulations with protein stability and network-based rigidity decomposition analyses to characterize dynamic …


Virtual Reality As A Training Tool To Treat Physical Inactivity In Children, Adam W. Kiefer, David Pincus, Michael J. Richardson, Gregory D. Myer Dec 2017

Virtual Reality As A Training Tool To Treat Physical Inactivity In Children, Adam W. Kiefer, David Pincus, Michael J. Richardson, Gregory D. Myer

Psychology Faculty Articles and Research

Lack of adequate physical activity in children is an epidemic that can result in obesity and other poor health outcomes across the lifespan. Physical activity interventions focused on motor skill competence continue to be developed, but some interventions, such as neuromuscular training (NMT), may be limited in how early they can be implemented due to dependence on the child’s level of cognitive and perceptual-motor development. Early implementation of motor-rich activities that support motor skill development in children is critical for the development of healthy levels of physical activity that carry through into adulthood. Virtual reality (VR) training may be beneficial …


Computational Analysis Of Residue Interaction Networks And Coevolutionary Relationships In The Hsp70 Chaperones: A Community- Hopping Model Of Allosteric Regulation And Communication, Gabrielle Stetz, Gennady M. Verkhivker Jan 2017

Computational Analysis Of Residue Interaction Networks And Coevolutionary Relationships In The Hsp70 Chaperones: A Community- Hopping Model Of Allosteric Regulation And Communication, Gabrielle Stetz, Gennady M. Verkhivker

Mathematics, Physics, and Computer Science Faculty Articles and Research

Allosteric interactions in the Hsp70 proteins are linked with their regulatory mechanisms and cellular functions. Despite significant progress in structural and functional characterization of the Hsp70 proteins fundamental questions concerning modularity of the allosteric interaction networks and hierarchy of signaling pathways in the Hsp70 chaperones remained largely unexplored and poorly understood. In this work, we proposed an integrated computational strategy that combined atomistic and coarse-grained simulations with coevolutionary analysis and network modeling of the residue interactions. A novel aspect of this work is the incorporation of dynamic residue correlations and coevolutionary residue dependencies in the construction of allosteric interaction networks …


Detection And Tracking Of T Cells In Time-Lapse Imaging, Cody Arbuckle, Milton L. Greenberg, Erik J. Linstead Jan 2015

Detection And Tracking Of T Cells In Time-Lapse Imaging, Cody Arbuckle, Milton L. Greenberg, Erik J. Linstead

Mathematics, Physics, and Computer Science Faculty Articles and Research

The effective classification and tracking of cells obtained from modern staining techniques has significant limitations due to the necessity of having to train and utilize a human expert in the field who must manually identify each cell in each slide. Often times these slides are filled with noise cells that are not of particular interest to the researcher. The use of computational methods has the ability to effectively and efficiently enhance image quality, as well as identify and track target cell types over large data sets. Here we present a computational approach to the in vitro tracking of T cells …


Design Of Randomized Experiments In Networks, Dylan Walker, Lev Muchnik Nov 2014

Design Of Randomized Experiments In Networks, Dylan Walker, Lev Muchnik

Business Faculty Articles and Research

Over the last decade, the emergence of pervasive online and digitally enabled environments has created a rich source of detailed data on human behavior. Yet, the promise of big data has recently come under fire for its inability to separate correlation from causation-to derive actionable insights and yield effective policies. Fortunately, the same online platforms on which we interact on a day-to-day basis permit experimentation at large scales, ushering in a new movement toward big experiments. Randomized controlled trials are the heart of the scientific method and when designed correctly provide clean causal inferences that are robust and reproducible. However, …


Improving The Efficacy Of Web-Based Educational Outreach In Ecology, Gregory R. Goldsmith, Andrew D. Fulton, Colin D. Witherill, Javier F. Espeleta Oct 2014

Improving The Efficacy Of Web-Based Educational Outreach In Ecology, Gregory R. Goldsmith, Andrew D. Fulton, Colin D. Witherill, Javier F. Espeleta

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Scientists are increasingly engaging the web to provide formal and informal science education opportunities. Despite the prolific growth of web-based resources, systematic evaluation and assessment of their efficacy remains limited. We used clickstream analytics, a widely available method for tracking website visitors and their behavior, to evaluate 60,000 visits over three years to an educational website focused on ecology. Visits originating from search engine queries were a small proportion of the traffic, suggesting the need to actively promote websites to drive visitation. However, the number of visits referred to the website per social media post varied depending on the social …