Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Life Sciences

A Novel Correlation Networks Approach For The Identification Of Gene Targets, Kathryn Dempsey Cooper, Stephen Bonasera, Dhundy Raj Bastola, Hesham Ali Jan 2011

A Novel Correlation Networks Approach For The Identification Of Gene Targets, Kathryn Dempsey Cooper, Stephen Bonasera, Dhundy Raj Bastola, Hesham Ali

Interdisciplinary Informatics Faculty Proceedings & Presentations

Correlation networks are emerging as a powerful tool for modeling temporal mechanisms within the cell. Particularly useful in examining coexpression within microarray data, studies have determined that correlation networks follow a power law degree distribution and thus manifest properties such as the existence of “hub” nodes and semicliques that potentially correspond to critical cellular structures. Difficulty lies in filtering coincidental relationships from causative structures in these large, noise-heavy networks. As such, computational expenses and algorithm availability limit accurate comparison, making it difficult to identify changes between networks. In this vein, we present our work identifying temporal relationships from microarray data …


Evaluation Of Essential Genes In Correlation Networks Using Measures Of Centrality, Kathryn Dempsey Cooper, Hesham Ali Jan 2011

Evaluation Of Essential Genes In Correlation Networks Using Measures Of Centrality, Kathryn Dempsey Cooper, Hesham Ali

Interdisciplinary Informatics Faculty Proceedings & Presentations

Correlation networks are emerging as powerful tools for modeling relationships in high-throughput data such as gene expression. Other types of biological networks, such as protein-protein interaction networks, are popular targets of study in network theory, and previous analysis has revealed that network structures identified using graph theoretic techniques often relate to certain biological functions. Structures such as highly connected nodes and groups of nodes have been found to correspond to essential genes and protein complexes, respectively. The correlation network, which measures the level of co-variation of gene expression levels, shares some structural properties with other types of biological networks. We …


A Noise Reducing Sampling Approach For Uncovering Critical Properties In Large Scale Biological Networks, Karthik Duraisamy, Kathryn Dempsey Cooper, Hesham Ali, Sanjukta Bhowmick Jan 2011

A Noise Reducing Sampling Approach For Uncovering Critical Properties In Large Scale Biological Networks, Karthik Duraisamy, Kathryn Dempsey Cooper, Hesham Ali, Sanjukta Bhowmick

Interdisciplinary Informatics Faculty Proceedings & Presentations

A correlation network is a graph-based representation of relationships among genes or gene products, such as proteins. The advent of high-throughput bioinformatics has resulted in the generation of volumes of data that require sophisticated in silico models, such as the correlation network, for in-depth analysis. Each element in our network represents expression levels of multiple samples of one gene and an edge connecting two nodes reflects the correlation level between the two corresponding genes in the network according to the Pearson correlation coefficient. Biological networks made in this manner are generally found to adhere to a scale-free structural nature, that …


A Parallel Graph Sampling Algorithm For Analyzing Gene Correlation Networks, Kathryn Dempsey Cooper, Kanimathi Duraisamy, Hesham Ali, Sanjukta Bhowmick Jan 2011

A Parallel Graph Sampling Algorithm For Analyzing Gene Correlation Networks, Kathryn Dempsey Cooper, Kanimathi Duraisamy, Hesham Ali, Sanjukta Bhowmick

Interdisciplinary Informatics Faculty Publications

Effcient analysis of complex networks is often a challenging task due to its large size and the noise inherent in the system. One popular method of overcoming this problem is through graph sampling, that is extracting a representative subgraph from the larger network. The accuracy of the sample is validated by comparing the combinatorial properties of the subgraph and the original network. However, there has been little study in comparing networks based on the applications that they represent. Furthermore, sampling methods are generally applied agnostically, without mapping to the requirements of the underlying analysis. In this paper,we introduce a parallel …