Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Life Sciences

Identifying Aging-Related Genes In Mouse Hippocampus Using Gateway Nodes, Kathryn Dempsey Cooper, Hesham Ali Jan 2014

Identifying Aging-Related Genes In Mouse Hippocampus Using Gateway Nodes, Kathryn Dempsey Cooper, Hesham Ali

Interdisciplinary Informatics Faculty Publications

Background: High-throughput studies continue to produce volumes of metadata representing valuable sources of information to better guide biological research. With a stronger focus on data generation, analysis models that can readily identify actual signals have not received the same level of attention. This is due in part to high levels of noise and data heterogeneity, along with a lack of sophisticated algorithms for mining useful information. Networks have emerged as a powerful tool for modeling high-throughput data because they are capable of representing not only individual biological elements but also different types of relationships en masse. Moreover, well-established graph …


A Parallel Template For Implementing Filters For Biological Correlation Networks, Kathryn Dempsey Cooper, Vladimir Ufimtsev, Sanjukta Bhowmick, Hesham Ali Jan 2013

A Parallel Template For Implementing Filters For Biological Correlation Networks, Kathryn Dempsey Cooper, Vladimir Ufimtsev, Sanjukta Bhowmick, Hesham Ali

Interdisciplinary Informatics Faculty Publications

High throughput biological experiments are critical for their role in systems biology – the ability to survey the state of cellular mechanisms on the broad scale opens possibilities for the scientific researcher to understand how multiple components come together, and what goes wrong in disease states. However, the data returned from these experiments is massive and heterogeneous, and requires intuitive and clever computational algorithms for analysis. The correlation network model has been proposed as a tool for modeling and analysis of this high throughput data; structures within the model identified by graph theory have been found to represent key players …


A Parallel Graph Sampling Algorithm For Analyzing Gene Correlation Networks, Kathryn Dempsey Cooper, Kanimathi Duraisamy, Hesham Ali, Sanjukta Bhowmick Jan 2011

A Parallel Graph Sampling Algorithm For Analyzing Gene Correlation Networks, Kathryn Dempsey Cooper, Kanimathi Duraisamy, Hesham Ali, Sanjukta Bhowmick

Interdisciplinary Informatics Faculty Publications

Effcient analysis of complex networks is often a challenging task due to its large size and the noise inherent in the system. One popular method of overcoming this problem is through graph sampling, that is extracting a representative subgraph from the larger network. The accuracy of the sample is validated by comparing the combinatorial properties of the subgraph and the original network. However, there has been little study in comparing networks based on the applications that they represent. Furthermore, sampling methods are generally applied agnostically, without mapping to the requirements of the underlying analysis. In this paper,we introduce a parallel …