Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Life Sciences

Model-Based Deep Autoencoders For Clustering Single-Cell Rna Sequencing Data With Side Information, Xiang Lin Dec 2023

Model-Based Deep Autoencoders For Clustering Single-Cell Rna Sequencing Data With Side Information, Xiang Lin

Dissertations

Clustering analysis has been conducted extensively in single-cell RNA sequencing (scRNA-seq) studies. scRNA-seq can profile tens of thousands of genes' activities within a single cell. Thousands or tens of thousands of cells can be captured simultaneously in a typical scRNA-seq experiment. Biologists would like to cluster these cells for exploring and elucidating cell types or subtypes. Numerous methods have been designed for clustering scRNA-seq data. Yet, single-cell technologies develop so fast in the past few years that those existing methods do not catch up with these rapid changes and fail to fully fulfil their potential. For instance, besides profiling transcription …


Quantifying Balance: Computational And Learning Frameworks For The Characterization Of Balance In Bipedal Systems, Kubra Akbas Aug 2023

Quantifying Balance: Computational And Learning Frameworks For The Characterization Of Balance In Bipedal Systems, Kubra Akbas

Dissertations

In clinical practice and general healthcare settings, the lack of reliable and objective balance and stability assessment metrics hinders the tracking of patient performance progression during rehabilitation; the assessment of bipedal balance plays a crucial role in understanding stability and falls in humans and other bipeds, while providing clinicians important information regarding rehabilitation outcomes. Bipedal balance has often been examined through kinematic or kinetic quantities, such as the Zero Moment Point and Center of Pressure; however, analyzing balance specifically through the body's Center of Mass (COM) state offers a holistic and easily comprehensible view of balance and stability.

Building upon …


Machine Learning And Network Embedding Methods For Gene Co-Expression Networks, Niloofar Aghaieabiane May 2023

Machine Learning And Network Embedding Methods For Gene Co-Expression Networks, Niloofar Aghaieabiane

Dissertations

High-throughput technologies such as DNA microarrays and RNA-seq are used to measure the expression levels of large numbers of genes simultaneously. To support the extraction of biological knowledge, individual gene expression levels are transformed into Gene Co-expression Networks (GCNs). GCNs are analyzed to discover gene modules. GCN construction and analysis is a well-studied topic, for nearly two decades. While new types of sequencing and the corresponding data are now available, the software package WGCNA and its most recent variants are still widely used, contributing to biological discovery.

The discovery of biologically significant modules of genes from raw expression data is …


Deep Hybrid Modeling Of Neuronal Dynamics Using Generative Adversarial Networks, Soheil Saghafi May 2023

Deep Hybrid Modeling Of Neuronal Dynamics Using Generative Adversarial Networks, Soheil Saghafi

Dissertations

Mechanistic modeling and machine learning methods are powerful techniques for approximating biological systems and making accurate predictions from data. However, when used in isolation these approaches suffer from distinct shortcomings: model and parameter uncertainty limit mechanistic modeling, whereas machine learning methods disregard the underlying biophysical mechanisms. This dissertation constructs Deep Hybrid Models that address these shortcomings by combining deep learning with mechanistic modeling. In particular, this dissertation uses Generative Adversarial Networks (GANs) to provide an inverse mapping of data to mechanistic models and identifies the distributions of mechanistic model parameters coherent to the data.

Chapter 1 provides background information on …