Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Computer Sciences

Georgia State University

Computer Science Faculty Publications

Series

Algorithms

Publication Year

Articles 1 - 4 of 4

Full-Text Articles in Life Sciences

Parallel Progressive Multiple Sequence Alignment On Reconfigurable Meshes, Ken Nguyen, Yi Pan, Ge Nong Jan 2011

Parallel Progressive Multiple Sequence Alignment On Reconfigurable Meshes, Ken Nguyen, Yi Pan, Ge Nong

Computer Science Faculty Publications

Background: One of the most fundamental and challenging tasks in bio-informatics is to identify related sequences and their hidden biological significance. The most popular and proven best practice method to accomplish this task is aligning multiple sequences together. However, multiple sequence alignment is a computing extensive task. In addition, the advancement in DNA/RNA and Protein sequencing techniques has created a vast amount of sequences to be analyzed that exceeding the capability of traditional computing models. Therefore, an effective parallel multiple sequence alignment model capable of resolving these issues is in a great demand.

Results: We design O(1) run-time solutions …


A Comparison Of The Functional Modules Identified From Time Course And Static Ppi Network Data, Xiwei Tang, Jianxin Wang, Binbin Liu, Min Li, Gang Chen, Yi Pan Jan 2011

A Comparison Of The Functional Modules Identified From Time Course And Static Ppi Network Data, Xiwei Tang, Jianxin Wang, Binbin Liu, Min Li, Gang Chen, Yi Pan

Computer Science Faculty Publications

Background: Cellular systems are highly dynamic and responsive to cues from the environment. Cellular function and response patterns to external stimuli are regulated by biological networks. A protein-protein interaction (PPI) network with static connectivity is dynamic in the sense that the nodes implement so-called functional activities that evolve in time. The shift from static to dynamic network analysis is essential for further understanding of molecular systems.

Results: In this paper, Time Course Protein Interaction Networks (TC- PINs) are reconstructed by incorporating time series gene expression into PPI networks. Then, a clustering algorithm is used to create functional modules from three …


Identifying Protein Complexes From Interaction Networks Based On Clique Percolation And Distance Restriction, Jianxin Wang, Binbin Liu, Min Li, Yi Pan Jan 2010

Identifying Protein Complexes From Interaction Networks Based On Clique Percolation And Distance Restriction, Jianxin Wang, Binbin Liu, Min Li, Yi Pan

Computer Science Faculty Publications

Background: Identification of protein complexes in large interaction networks is crucial to understand principles of cellular organization and predict protein functions, which is one of the most important issues in the post-genomic era. Each protein might be subordinate multiple protein complexes in the real protein-protein interaction networks.Identifying overlapping protein complexes from protein-protein interaction networks is a considerable research topic.

Result: As an effective algorithm in identifying overlapping module structures, clique percolation method (CPM) has a wide range of application in social networks and biological networks. However, the recognition accuracy of algorithm CPM is lowly. Furthermore, algorithm CPM is unfit to …


A Novel Approach To Phylogenetic Tree Construction Using Stochastic Optimization And Clustering, Ling Qin, Yixin Chen, Yi Pan, Ling Chen Jan 2006

A Novel Approach To Phylogenetic Tree Construction Using Stochastic Optimization And Clustering, Ling Qin, Yixin Chen, Yi Pan, Ling Chen

Computer Science Faculty Publications

Background: The problem of inferring the evolutionary history and constructing the phylogenetic tree with high performance has become one of the major problems in computational biology.

Results: A new phylogenetic tree construction method from a given set of objects (proteins, species, etc.) is presented. As an extension of ant colony optimization, this method proposes an adaptive phylogenetic clustering algorithm based on a digraph to find a tree structure that defines the ancestral relationships among the given objects.

Conclusion: Our phylogenetic tree construction method is tested to compare its results with that of the genetic algorithm (GA). Experimental results show that …