Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Life Sciences

Quantifying The Carbon Stored And Sequestered By The Trees On Pomona College’S Campus, Paola A. Giron-Carson Jan 2023

Quantifying The Carbon Stored And Sequestered By The Trees On Pomona College’S Campus, Paola A. Giron-Carson

Scripps Senior Theses

We are experiencing a climate crisis that must be confronted with strategic mitigation. Pomona College contributes to the climate crisis through its emissions for which there is a baseline record. However there is no baseline record of the climate mitigation currently performed by the trees on Pomona’s campus through carbon storage. This study seeks to determine a current baseline quantity of carbon stored and sequestrated by Pomona’s trees as well as possible courses of climate mitigation for Pomona College to take. Initial information gathering was conducted through interviews with several stakeholders. This study was conducted using data collected prior to …


Frayed Connections: How Long-Term Nitrogen Additions Disrupt Plant-Soil Interactions And The Carbon Cycle Of A Temperate Forest, Brooke A. Eastman Jan 2022

Frayed Connections: How Long-Term Nitrogen Additions Disrupt Plant-Soil Interactions And The Carbon Cycle Of A Temperate Forest, Brooke A. Eastman

Graduate Theses, Dissertations, and Problem Reports

Forests are expected to mitigate some of the negative effects of climate change by sequestering anthropogenic carbon (C) from the atmosphere, but the degree to which they drawn down C will depend on the availability of key nutrients, such as nitrogen (N). There is a fair amount of uncertainty in the future of the forest C sink, mostly owing to the fate of soil organic matter (SOM) and soil heterotrophic respiration to future conditions. In N limited systems, plants allocate a significant amount of their photosynthate belowground for the acquisition of nutrients, but under conditions of chronic N deposition, plants …


Climate Change, Spruce Root Phenology, And Allocation Of Carbon Below- And Above-Ground, Marie Louise Orton Jan 2017

Climate Change, Spruce Root Phenology, And Allocation Of Carbon Below- And Above-Ground, Marie Louise Orton

Legacy Theses & Dissertations (2009 - 2024)

Tree ring analysis has relied on a close relationship between climate and photosynthetically-derived stem enlargement. Lengthening growing seasons associated with climate warming have been predicted to enhance carbon sequestration as wood in trees, but this