Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Expression Of Cyanobacterial Fbp/Sbpase In Soybean Prevents Yield Depression Under Future Climate Conditions, Iris H. Kohler, Ursula M. Ruiz-Vera, Andy Vanloocke, Michell L. Thomey, Tom Clemente, Stephen P. Long, Donald R. Ort, Carl J. Bernacchi Jan 2017

Expression Of Cyanobacterial Fbp/Sbpase In Soybean Prevents Yield Depression Under Future Climate Conditions, Iris H. Kohler, Ursula M. Ruiz-Vera, Andy Vanloocke, Michell L. Thomey, Tom Clemente, Stephen P. Long, Donald R. Ort, Carl J. Bernacchi

Andy VanLoocke

Predictions suggest that current crop production needs to double by 2050 to meet global food and energy demands. Based on theory and experimental studies, overexpression of the photosynthetic enzyme sedoheptulose-1,7-bisphosphatase (SBPase) is expected to enhance C3 crop photosynthesis and yields. Here we test how expression of the cyanobacterial, bifunctional fructose-1,6/sedoheptulose-1,7-bisphosphatase (FBP/SBPase) affects carbon assimilation and seed yield (SY) in a major crop (soybean, Glycine max). For three growing seasons, wild-type (WT) and FBP/SBPase-expressing (FS) plants were grown in the field under ambient (400 μmol mol−1) and elevated (600 μmol mol−1) CO2 concentrations [CO2] and under ambient and elevated temperatures (+2.7 …


The Costs Of Photorespiration To Food Production Now And In The Future, Berkley J. Walker, Andy Vanloocke, Carl J. Bernacchi, Donald R. Ort Jan 2017

The Costs Of Photorespiration To Food Production Now And In The Future, Berkley J. Walker, Andy Vanloocke, Carl J. Bernacchi, Donald R. Ort

Andy VanLoocke

Photorespiration is essential for C3 plants but operates at the massive expense of fixed carbon dioxide and energy. Photorespiration is initiated when the initial enzyme of photosynthesis, ribulose-1,5-bisphosphate carboxylase/ oxygenase (Rubisco), reacts with oxygen instead of carbon dioxide and produces a toxic compound that is then recycled by photorespiration. Photorespiration can be modeled at the canopy and regional scales to determine its cost under current and future atmospheres. A regional-scale model reveals that photorespiration currently decreases US soybean and wheat yields by 36% and 20%, respectively, and a 5% decrease in the losses due to photorespiration would be worth approximately …