Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Life Sciences

Methionyl-Trna Synthetase Synthetic And Proofreading Activities Are Determinants Of Antibiotic Persistence, Whitney N. Wood, Miguel Angel Rubio, Lorenzo Eugenio Leiva, Gregory J. Phillips, Michael Ibba Mar 2024

Methionyl-Trna Synthetase Synthetic And Proofreading Activities Are Determinants Of Antibiotic Persistence, Whitney N. Wood, Miguel Angel Rubio, Lorenzo Eugenio Leiva, Gregory J. Phillips, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Bacterial antibiotic persistence is a phenomenon where bacteria are exposed to an antibiotic and the majority of the population dies while a small subset enters a low metabolic, persistent, state and are able to survive. Once the antibiotic is removed the persistent population can resuscitate and continue growing. Several different molecular mechanisms and pathways have been implicated in this phenomenon. A common mechanism that may underly bacterial antibiotic persistence is perturbations in protein synthesis. To investigate this mechanism, we characterized four distinct metG mutants for their ability to increase antibiotic persistence. Two metG mutants encode changes near the catalytic site …


Functional Characterization Of Accessory Proteins And Novel Activities In Direct And Indirect Trna Aminoacylation, Udumbara Menike Rathnayake Jan 2019

Functional Characterization Of Accessory Proteins And Novel Activities In Direct And Indirect Trna Aminoacylation, Udumbara Menike Rathnayake

Wayne State University Dissertations

Indirect tRNA aminoacylation is essential for most bacteria and archaea, particularly when these species do not have genes encoding asparaginyl- and/or glutaminyl-tRNA synthetase (AsnRS and GlnRS). In the absence of AsnRS, the first step in Asn-tRNAAsn synthesis involves misacylation of tRNAAsn with aspartate to produce Asp-tRNAAsn; this reaction is catalyzed by a non-discriminating aspartyl-tRNA synthetase (ND-AspRS). Subsequently, in bacteria, an amidotransferase called GatCAB converts Asp-tRNAAsn to Asn-tRNAAsn. An analogous, two-step processes exist to produce Gln-tRNAGln. In this case, a non-discriminating glutamyl-tRNA synthetase (ND-GluRS) misacylates tRNAGln to produce Glu-tRNAGln, which is then converted to Gln-tRNAGln by GatCAB. The central hub of …


The Role Of Upstream Sequences In Selecting The Reading Frame On Tmrna, Allen R. Buskirk, Mickey R. Miller, David W. Healey, Jonathan D. Dewey, Stephen G. Robison Jun 2008

The Role Of Upstream Sequences In Selecting The Reading Frame On Tmrna, Allen R. Buskirk, Mickey R. Miller, David W. Healey, Jonathan D. Dewey, Stephen G. Robison

Faculty Publications

tmRNA acts first as a tRNA and then as an mRNA to rescue stalled ribosomes in eubacteria. Two unanswered questions about tmRNA function remain: how does tmRNA, lacking an anticodon, bypass the decoding machinery and enter the ribosome? Secondly, how does the ribosome choose the proper codon to resume translation on tmRNA? According to the -1 triplet hypothesis, the answer to both questions lies in the unique properties of the three nucleotides upstream of the first tmRNA codon. These nucleotides assume an A-form conformation that mimics the codon-anticodon interaction, leading to recognition by the decoding center and choice of the …