Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 19 of 19

Full-Text Articles in Life Sciences

Binding Interactions Of Biologically Relevant Molecules Studied Using Surface-Modified And Nanostructured Surfaces, Palak Sondhi Nov 2023

Binding Interactions Of Biologically Relevant Molecules Studied Using Surface-Modified And Nanostructured Surfaces, Palak Sondhi

Dissertations

This research focuses on the field of surface nanobioscience, wherein different nanosurfaces that will be used as working electrodes in the electrochemical cell are manufactured and surface modified to understand the critical binding interactions between biologically significant molecules like proteins, carbohydrates, small drug molecules, and glycoproteins. This research is essential if we are to determine whether a synthetic molecule can serve as a therapeutic candidate or diagnose a disease in its early stages. In order to fully understand the binding interactions, the study begins with defining some of the fundamental concepts, principles, and analytical tools for biosensing.

Afterwards, we addressed …


Ferrocenium Salt Aided Substitution Reactions And Synthesis Of Glycosylated Curcumin Derivatives, Deva Saroja Talasila Nov 2022

Ferrocenium Salt Aided Substitution Reactions And Synthesis Of Glycosylated Curcumin Derivatives, Deva Saroja Talasila

Dissertations

Organic synthesis has been significantly advanced with the employment of transition metal complexes. The discovery of transition metal catalysts provided the synthetic community with powerful tools for accelerating reactions and making them more selective and efficient. Many chemical reactions do not happen without a catalyst.

Iron-based catalysts have several advantages for the chemical industry because it is a non-toxic and ecologically friendly metal. Our group previously found that ferrocenium cations with a 3+ oxidation state of iron-catalyzed propargylic substitution reactions at low temperatures. The sandwich structure of ferrocenes allows substituents to be introduced on the cyclopentadienyl rings, which allows for …


A Study Of Red Snapper (Lutjanus Campechanus) Ecology In The Northern Gulf Of Mexico And The Effect Of Variable River Outflow Using Stable Isotope Analysis Of The Food Web And Eye Lenses, Caitlin C. Slife Aug 2022

A Study Of Red Snapper (Lutjanus Campechanus) Ecology In The Northern Gulf Of Mexico And The Effect Of Variable River Outflow Using Stable Isotope Analysis Of The Food Web And Eye Lenses, Caitlin C. Slife

Dissertations

In the Mississippi Bight and surrounding waters, river outflow impacts the basal resources of the Red Snapper food web, altering carbon sources and impacting prey and predator isotopes. In this study, the impact of riverine outflow on nutrients, particulate organic matter (POM), and physical water parameters on Red Snapper and their food web was analyzed using stable isotope and stomach content analysis over 5 years. The Mississippi, Pearl, Pascagoula, and Mobile rivers were included in the analysis of river impact. The Mississippi and Mobile rivers were found to significantly impact nutrients and POM in the region. River outflow was also …


Mechanism Of Sila- And Germafluorenes For Biological Applications, Shelby Jarrett Jun 2022

Mechanism Of Sila- And Germafluorenes For Biological Applications, Shelby Jarrett

Dissertations

2,7-disubstituted silafluorenes and germafluorenes, originally designed for OLED applications, are a class of fluorescent dyes that have gained recent interest as probes for bioimaging and as biosensors to monitor cellular dynamics and interactions. Desirable biological probes absorb in the visible region, have high extinction coefficients, high quantum yield and excellent photostability. Here, their spectral properties are investigated under aqueous conditions for relevant biological applications. These molecules display intense blue fluorescence in the solid state and in solution, have high extinction coefficients, and exhibit appreciable solubility in aqueous solution. To better understand potential applications, the mechanism of fluorescence was investigated. It …


Reconstituting The Cyanobacterial Circadian Clock In Vitro, Pyong Hwa Kim May 2021

Reconstituting The Cyanobacterial Circadian Clock In Vitro, Pyong Hwa Kim

Dissertations

Cyanobacteria are photosynthetic organisms that are known to be responsible for oxygenating Earth’s early atmosphere. Having evolved to ensure optimal survival in the periodic light/dark cycle on this planet, their genetic codes are packed with various tools, including a sophisticated biological timekeeping system. Among the cyanobacteria is Synechococcus elongatus PCC 7942, the simplest clock-harboring organism with a powerful genetic tool that enabled the identification of its intricate timekeeping mechanism. The three central oscillator proteins—KaiA, KaiB, and KaiC—drive the 24 h cyclic gene expression rhythm of cyanobacteria, and the "ticking" of the oscillator can be reconstituted inside a test tube just …


Molecular Mechanism Of Cyanobacteria Circadian Clock Oscillator And Effect Of Co Factors On Its Oscillation, Manpreet Kaur Dec 2020

Molecular Mechanism Of Cyanobacteria Circadian Clock Oscillator And Effect Of Co Factors On Its Oscillation, Manpreet Kaur

Dissertations

The circadian rhythms arise as an adaptation to the environmental 24-hour day and night cycle due to Earth's rotation. These rhythms prepare organisms to align their internal biological activities and day to day behavior or events with the environmental change of the 24-hour day and night cycle. Circadian rhythms are found widely in all living kingdoms of life on Earth. Cyanobacteria are photosynthetic prokaryotes which first used to study these circadian rhythms. Among cyanobacterial species, Synechococcus elongatus PCC 7942 (henceforth, S. Elongatus) is the simplest organism with a durable and sturdy circadian clock and is study as a model organism. …


Mitochondria Imaging And Targeted Cancer Treatment, Tinghan Zhao Dec 2019

Mitochondria Imaging And Targeted Cancer Treatment, Tinghan Zhao

Dissertations

Mitochondria are essential organelles as the site of respiration in eukaryotic cells and are involved in many crucial functions in cell life. Dysfunction of mitochondrial metabolism and irregular morphology have been frequently found in human cancers. The capability of imaging mitochondria as well as regulating their microenvironment is important both scientifically and clinically. Mitochondria penetrating peptides (MPPs), certain peptides that are composed of cationic and hydrophobic amino acids, are good candidates for mitochondria targeting. Herein, a novel MPP, D-argine-phenylalanine-D-argine-phenylalanine-D-argine-phenylalanine-NH2 (rFrFrF), is conjugated with a rhodamine-based fluorescent chromophore (TAMRA). The TAMRA-rFrFrF probe exhibits advantageous properties for long-term mitochondria tracking of …


The Antimicrobial Activity And Cellular Targets Of Plant Derived Aldehydes And Degradable Pro-Antimicrobial Networks In Pseudomonas Aeruginosa, Yetunde Adewunmi Dec 2019

The Antimicrobial Activity And Cellular Targets Of Plant Derived Aldehydes And Degradable Pro-Antimicrobial Networks In Pseudomonas Aeruginosa, Yetunde Adewunmi

Dissertations

Essential oils (EOs) are plant-derived products that have been long exploited for their antimicrobial activities in medicine, agriculture, and food preservation. EOs represent a promising alternative to conventional antibiotics due to the broad-range antimicrobial activity, low toxicity to human commensal bacteria, and the capacity to kill microorganisms without promoting resistance. Despite the progress in the understanding of the biological activity of EOs, many aspects of their mode of action remain inconclusive. The overarching aim of this work was to address these gaps by studying molecular interactions between antimicrobial plant aldehydes and the opportunistic human pathogen Pseudomonas aeruginosa. We initiated …


Functionalized Carbon Nanotubes In Hydrophobic Drug Delivery, Kun Chen Dec 2018

Functionalized Carbon Nanotubes In Hydrophobic Drug Delivery, Kun Chen

Dissertations

The direct incorporation of carboxylated carbon nanotubes (f-CNTs) into hydrophobic drug particles during their formation via anti-solvent precipitation is presented. The approach is tested using two drugs namely antifungal agent Griseofulvin (GF) and antibiotic Sulfamethoxazole (SMZ) that have very different aqueous solubility. It is observed that the f-CNTs dispersed in the water serve as nucleating sites for crystallization and are readily incorporated into the drug particles without altering crystal structure or other properties. The results show that the hydrophilic f-CNTs dramatically enhance dissolution rate for both drugs. The increased degree of functionalization leads to higher hydrophilicity and therefore faster dissolution …


Fluorescent Probes And Functionalized Nanoparticles For Bioimaging: Synthesis, Photophysical Properties And Applications, Xinglei Liu May 2018

Fluorescent Probes And Functionalized Nanoparticles For Bioimaging: Synthesis, Photophysical Properties And Applications, Xinglei Liu

Dissertations

The development of new organic molecular probes with excellent photophysical properties and high fluorescence quantum yields is of considerable interest to many research areas including one- and two-photon fluorescence microscopy, fluorescence-based sensing methodologies, and cancer therapy. Series of organic linear-/non-linear optical molecules including squaraine derivatives, and fluorene derivatives as well as other bioconjugates are designed and synthesized during the doctoral study for the aim of ion detection (Chapter 5), photo dynamic therapy, and deep-tissue imaging (Chapter 4). These optical probes are capable of absorbing light in the near infrared (NIR) window and thus have deeper penetration and cause less photodamage …


Electrogenerated Chemiluminescence Study Of Semiconductor Nanoparticles Towards Sensitive Detection Of Biomolecules, Yiliyasi Wusimanjiang Dec 2016

Electrogenerated Chemiluminescence Study Of Semiconductor Nanoparticles Towards Sensitive Detection Of Biomolecules, Yiliyasi Wusimanjiang

Dissertations

The main focus of this dissertation is to unfold the fundamental aspects of electrogenerated chemiluminescence (ECL) generation from semiconductor nanoparticles (also known as quantum dots or QDs) within different ECL systems. The ECL and photo-physical interactions between the CdTe QDs (λemission= ~760 nm) and the CdSe QDs (λemission= ~550 nm), as well as the effects of carbon nanotubes on ECL of QDs were separately investigated. Optimum experimental conditions for peptide bond formation on an electrode surface through EDC (1-ethyl-3-(-3-dimethylaminopropyl) carbodiimide hydrochloride)/NHS (N-Hydroxysulfosuccinimide) coupling were also revealed using cyclic voltammetry technique. Based on the information …


Analysis Of The Intricacies Of Substrate Recognition Of High Mobility Group Proteins And Aminoacyl-Trna Synthetases Using Non-Cognate Substrates, Douglas Van Iverson Ii Aug 2016

Analysis Of The Intricacies Of Substrate Recognition Of High Mobility Group Proteins And Aminoacyl-Trna Synthetases Using Non-Cognate Substrates, Douglas Van Iverson Ii

Dissertations

The studies presented in section 1 (Chapters I-IV) focus on the design and development of nucleic acid four-way junctions (4WJs) to target a member of the high mobility group (HMG) proteins, the proinflammatory cytokine high mobility group box 1 protein (HMGB1). In the present study, hybrid PNA-DNA 4WJs based on a model DNA 4WJ were constructed to improve the thermal stability of 4WJs while maintaining strong binding affinity toward HMGB1. An electrophoretic mobility shift assay (EMSA) was used to examine the binding affinity of an isolated DNA binding domain of HMGB1, the HMGB1 b-box (HMGB1b), toward a set of PNA-DNA …


Ultrafast Interfacial Electron Transfer Across Molecule-Tio2 Nanocomposites: Towards Solar Cells And Two Photon Absorption, Edwin Mghanga Dec 2014

Ultrafast Interfacial Electron Transfer Across Molecule-Tio2 Nanocomposites: Towards Solar Cells And Two Photon Absorption, Edwin Mghanga

Dissertations

Interfacial charge transfer (ICT) across the molecule-TiO2 nanoparticle interface has gained enormous research attention for applications in dye sensitized solar cells (DSSC), photo-catalysis, water splitting and nonlinear optics. DSSCs are promising clean alternative energy sources. However, current DSSCs suffer from lower efficiencies and higher cost. Better understanding of the ICT processes in DSSCs can help solve these problems. We have used two strategies to understand ICT in the context of DSSCs. Firstly, we used a computationally validated anchor group, acetylacetonate (acac) to bind molecules to the semiconductor surface and facilitate charge separation. Secondly, we used natural dye sensitizers, …


Biogeochemistry Of Trace Elements In The Mixing Zone Of The Mississippi And Atchafalaya Rivers And Chemical Distributions As Affected By The Deepwater Horizon Blowout, Dongjoo Joung May 2014

Biogeochemistry Of Trace Elements In The Mixing Zone Of The Mississippi And Atchafalaya Rivers And Chemical Distributions As Affected By The Deepwater Horizon Blowout, Dongjoo Joung

Dissertations

Selected trace elements (TEs), dissolved organic carbon, and nutrients were studied in Louisiana Shelf waters including the Mississippi (MR) and Atchafalaya (AR) River plumes during periods of high, intermediate, and low river discharges. Seasonal variations in TEs were observed at low salinity, reflecting seasonal changes in the river water endmembers. Shelf surface water dissolved Mo, Cs, U, Ni, and Cu showed conservative behavior with minor scattering in some high salinity waters. Based on associated mixing experiments, nutrient and chlorophyll distributions, as well as surface-bottom concentration contrasts, the non-conservative behavior of TEs was variously related to colloidal flocculation (Fe, Cr), biological …


Investigations Toward Tunability Of Mechanical, Thermal, And Impact Properties Of Thiol-Ene Networks For Novel High Energy Absorbing Materials, Olivia Devon Mcnair May 2013

Investigations Toward Tunability Of Mechanical, Thermal, And Impact Properties Of Thiol-Ene Networks For Novel High Energy Absorbing Materials, Olivia Devon Mcnair

Dissertations

The UV polymerization of thiols with electron rich alkenes is a highly resourceful reaction that has been utilized by scientists within various disciplines to produce an even more versatile display of applications. This dissertation focuses on a newer application, thiol-ene network (TEN) materials for energy absorption devices. TEN networks display a host of positive polymer properties such as low stress, high optical clarity and uniformity, but they also suffer from unfavorable mechanical properties such as low toughness and elongation at break. The poor mechanical properties demonstrated by TENs prohibit them as choice materials for applications requiring thicker material forms, including …


Characterizing Potential Sustainable Energy Feedstocks, Jesse George Thompson Jan 2011

Characterizing Potential Sustainable Energy Feedstocks, Jesse George Thompson

Dissertations

Trap grease offers a promising and less expensive alternative to food grade vegetable oils for biodiesel production, but its commercial marketability could be affected by its intense and offensive odor. Identification, quantitation and eventual elimination of the odorant compounds are vital challenges that need to be addressed before commercialization can be achieved. A rapid method using HS-SPME and GC/MS was developed in this study to identify and quantify the major volatile odorant compounds present in trap grease. The main odorant compounds were identified as short chain free fatty acids (SC-FFA) from C4 - C10.

Sensory evaluations by …


Glucosamine-Induced Insulin Resistance In Primary Rat Hepatocytes And The Role Of Selenium As An Insulin Mimetic, Sandhya N. Adiyodi Veetil Jan 2011

Glucosamine-Induced Insulin Resistance In Primary Rat Hepatocytes And The Role Of Selenium As An Insulin Mimetic, Sandhya N. Adiyodi Veetil

Dissertations

Type 2 diabetes is mediated by insulin resistance, the inability of insulin to elicit a normal biological response in insulin responsive tissues. Several cellular models have been utilized to determine the mechanism of induction of insulin resistance but questions remain unanswered. One model, implicates the products of the Hexosamine Biosynthetic Pathway (HBP) in the induction of insulin resistance under hyperglycemia. The major end product of HBP, UDP-GlcNAc, is the substrate for O-GlcNAc transferase, an enzyme that catalyzes the O-GlcNAcylation of numerous proteins. This modification may play a role in induction of insulin resistance and thus needs to be evaluated in …


Folate Receptor-Targeted Delivery Of Small Interfering Rna To Cancer Cells, Yilin Zhang Dec 2010

Folate Receptor-Targeted Delivery Of Small Interfering Rna To Cancer Cells, Yilin Zhang

Dissertations

The vitamin folic acid (folate, FA) has been extensively explored as a targeting ligand to deliver a variety of diagnostic/prognostic/therapeutic agents into various tumors through the assistance of its receptor – the folate receptor (FR). FR is over-expressed in many types of human cancer and can mediate internalization of FA-conjugates through an endocytic pathway. The discovery of small interfering RNA (siRNA), which is cable of inducing potent gene silencing in a sequence-specific manner, provides an excellent molecular tool to suppress aberrant gene expression in malignancies, and therefore siRNA has the potential to revolutionize cancer therapeutics. Towards the goal of developing …


Quantification Of Benzo[A]Pyrene-Guanine Adducts In In Vitro And In Vivo Tissue Samples By Lc Tandem Mass Spectrometry, Po-Chang Chiang Jun 2001

Quantification Of Benzo[A]Pyrene-Guanine Adducts In In Vitro And In Vivo Tissue Samples By Lc Tandem Mass Spectrometry, Po-Chang Chiang

Dissertations

No abstract provided.