Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Life Sciences

Antibiotic Sensitivity Testing Of Foodborne Bacteria Using Surface-Enhanced Raman Spectroscopy, Joshua Gukowsky Oct 2021

Antibiotic Sensitivity Testing Of Foodborne Bacteria Using Surface-Enhanced Raman Spectroscopy, Joshua Gukowsky

Doctoral Dissertations

The spread of antibiotic resistant bacteria around the world has become a major public health issue, and it is essential that effective detection methods exist for identifying these organisms and preventing them from spreading throughout our food systems and into the environment. The goal of this research is to develop a novel analytical procedure that is capable of easily identifying antibiotic resistance in bacterial samples, and also provides more information about the biochemical characteristics of the bacteria and their responses to antibiotic exposure. Surface-enhanced Raman Spectroscopy (SERS), an analytical technique that uses light scattering to produce a spectrum based on …


Amyloidogenesis Of Β-2-Microglobulin Studied By Mass Spectrometry And Covalent Labeling, Blaise G. Arden Oct 2021

Amyloidogenesis Of Β-2-Microglobulin Studied By Mass Spectrometry And Covalent Labeling, Blaise G. Arden

Doctoral Dissertations

Amyloid-forming proteins are implicated in a number of debilitating diseases. While many amyloid-forming proteins are well studied, the early stages of amyloidosis are still not well understood on a molecular level. Covalent labeling, combined with mass spectrometry (CL-MS), is uniquely well suited to provide molecular-level insight into the factors governing the early stages of amyloidosis. This dissertation leverages CL-MS techniques to examine the early stages of β-2-microglobulin (β2m) amyloidosis. β2m is the protein that forms amyloids in the condition known as dialysis-related amyloidosis. An automated CL-MS technique that uses dimethyl(2-hydroxy-5-nitrobenzyl) sulfonium bromide as a labeling reagent was developed and used …


Investigative Mechanisms To Exploit Caspase-Induced Apoptosis Using Polymeric Nanogels, Francesca Edith Anson May 2021

Investigative Mechanisms To Exploit Caspase-Induced Apoptosis Using Polymeric Nanogels, Francesca Edith Anson

Doctoral Dissertations

Cysteine aspartate proteases (caspases) act as the molecular scissors of cell death, disintegrating diverse cellular components necessary for survival and growth via proteolysis. Caspases are tightly regulated through a myriad of mechanisms including proteolytic processing, structural changes, post-translational modifications and metal binding. Correspondingly, cancers have evolved numerous resistance and desensitization mechanisms upstream or within the caspase pathway to avoid death signals. These mechanisms are extremely diverse and are not fully understood however, the field overwhelming suggests caspase activity and caspase inhibition antagonism to be critical for efficacious cancer therapies. Accordingly, exploiting the role of caspases in apoptosis has become an …


Evidence For The Role Of Cyp51a And Xenobiotic Detoxification In Differential Sensitivity To Azole Fungicides In Boxwood Blight Pathogens, Stefanos Stravoravdis, Robert E. Marra, Nicholas R. Leblanc, Joanne Crouch, Jonathan P. Hulvey Jan 2021

Evidence For The Role Of Cyp51a And Xenobiotic Detoxification In Differential Sensitivity To Azole Fungicides In Boxwood Blight Pathogens, Stefanos Stravoravdis, Robert E. Marra, Nicholas R. Leblanc, Joanne Crouch, Jonathan P. Hulvey

Microbiology Department Faculty Publication Series

Boxwood blight, a fungal disease of ornamental plants (Buxus spp.), is caused by two sister species, Calonectria pseudonaviculata (Cps) and C. henricotiae (Che). Compared to Cps, Che is documented to display reduced sensitivity to fungicides, including the azole class of antifungals, which block synthesis of a key fungal membrane component, ergosterol. A previous study reported an ergosterol biosynthesis gene in Cps, CYP51A, to be a pseudogene, and RNA-Seq data confirm that a functional CYP51A is expressed only in Che. The lack of additional ergosterol biosynthesis genes showing significant differential expression suggests that the functional CYP51A in Che could contribute to …


Polymeric Nanoparticles Active Against Dual-Species Bacterial Biofilms, Jessa Marie V. Makabenta, Jungmi Park, Cheng-Hsuan Li, Aritra Nath Chattopadhyay, Ahmed Nabawy, Ryan F. Landis, Akash Gupta, Suzannah Schmidt-Malan, Robin Patel, Vincent M. Rotello Jan 2021

Polymeric Nanoparticles Active Against Dual-Species Bacterial Biofilms, Jessa Marie V. Makabenta, Jungmi Park, Cheng-Hsuan Li, Aritra Nath Chattopadhyay, Ahmed Nabawy, Ryan F. Landis, Akash Gupta, Suzannah Schmidt-Malan, Robin Patel, Vincent M. Rotello

Chemistry Department Faculty Publication Series

Biofilm infections are a global public health threat, necessitating new treatment strategies. Biofilm formation also contributes to the development and spread of multidrug-resistant (MDR) bacterial strains. Biofilm-associated chronic infections typically involve colonization by more than one bacterial species. The co-existence of multiple species of bacteria in biofilms exacerbates therapeutic challenges and can render traditional antibiotics ineffective. Polymeric nanoparticles offer alternative antimicrobial approaches to antibiotics, owing to their tunable physico-chemical properties. Here, we report the efficacy of poly(oxanorborneneimide) (PONI)-based antimicrobial polymeric nanoparticles (PNPs) against multi-species bacterial biofilms. PNPs showed good dual-species biofilm penetration profiles as confirmed by confocal laser scanning microscopy. …