Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

The Orexin System In Doca-Salt Hypertension: Regulation Of Vasopressin, Jeremy Bigalke Jan 2019

The Orexin System In Doca-Salt Hypertension: Regulation Of Vasopressin, Jeremy Bigalke

Dissertations, Master's Theses and Master's Reports

Orexin is a neuropeptide with a large range of functions, with a recently discovered role in blood pressure (BP) regulation. Although the role of brain orexin system in hypertension has been investigated in several hypertensive animals, it remains unclear whether activation of the orexin system contributes to the development of Deoxycorticosterone-acetate (DOCA) hypertension, an animal model of human salt sensitive hypertension. In this study, we investigated the hypothesis that Orexin-1 receptor (OX1R) expression is increased in the paraventricular nucleus (PVN), a critical brain area controlling cardiovascular function, which subsequently increases vasopressin (AVP) expression and peripheral secretion, resulting in hypertension development …


Redox-Sensitive Calcium/Calmodulin-Dependent Protein Kinase Iiα In Angiotensin Ii Intra-Neuronal Signaling And Hypertension, Urmi Basu, Adam J. Case, Jinxu Liu, Jun Tian, Yulong Li, Matthew C. Zimmerman Jan 2019

Redox-Sensitive Calcium/Calmodulin-Dependent Protein Kinase Iiα In Angiotensin Ii Intra-Neuronal Signaling And Hypertension, Urmi Basu, Adam J. Case, Jinxu Liu, Jun Tian, Yulong Li, Matthew C. Zimmerman

Journal Articles: Cellular & Integrative Physiology

Dysregulation of brain angiotensin II (AngII) signaling results in modulation of neuronal ion channel activity, an increase in neuronal firing, enhanced sympathoexcitation, and subsequently elevated blood pressure. Studies over the past two decades have shown that these AngII responses are mediated, in part, by reactive oxygen species (ROS). However, the redox-sensitive target(s) that are directly acted upon by these ROS to execute the AngII pathophysiological responses in neurons remain unclear. Calcium/calmodulin-dependent protein kinase II (CaMKII) is an AngII-activated intra-neuronal signaling protein, which has been suggested to be redox sensitive as overexpressing the antioxidant enzyme superoxide dismutase attenuates AngII-induced activation of …