Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Life Sciences

Targeting Ccn Proteins In The Treatment Of Dermal Fibrosis, Alex Peidl Nov 2021

Targeting Ccn Proteins In The Treatment Of Dermal Fibrosis, Alex Peidl

Electronic Thesis and Dissertation Repository

Fibrotic disorders, including the inflammatory connective tissue disease systemic sclerosis (SSc), contribute to 45% of deaths in the Western world. Currently there is no universally agreed-upon treatment for fibrosis. The CCN family of matricellular proteins are tightly spatiotemporally regulated proteins involved in development and wound healing, and are aberrantly expressed in fibrotic disease, including in SSc. CCN1 and CCN2 are overexpressed in SSc and contribute to the progression of animal models of fibrosis. CCN3 is reciprocally regulated to CCN1 and CCN2 and has been shown to suppress CCN2-mediated fibrogenic activity in kidney fibrosis. This led to the development of therapeutic …


Characterizing The Structural, Biophysical And Functional Effects Of S-Glutathionylation On Stim1 Ca2+ Sensing, Christian Michael Sirko Aug 2021

Characterizing The Structural, Biophysical And Functional Effects Of S-Glutathionylation On Stim1 Ca2+ Sensing, Christian Michael Sirko

Electronic Thesis and Dissertation Repository

Stromal interaction molecule 1 (STIM1) is an endo/sarcoplasmic reticulum (ER/SR) calcium (Ca2+) sensing protein that initiates cytoplasmic Ca2+ influx via store-operated calcium entry (SOCE). STIM1, in conjunction with Orai, a plasma membrane (PM) protein, function as mediators of SOCE through the formation of calcium-release activated calcium (CRAC) channels. S-Glutathionylation of STIM1 at Cys56 has been shown to evoke constitutive Ca2+ entry in DT40 cells, however no studies have carefully investigated the biophysical and structural effects of this covalent modification to the luminal domain, which are critical for understanding the molecular mechanism underlying the regulation of …


Investigation Of The Hsp90 Co-Chaperone, Sti1, In Cellular Resilience And Neurodegenerative Diseases, Rachel E. Lackie Aug 2021

Investigation Of The Hsp90 Co-Chaperone, Sti1, In Cellular Resilience And Neurodegenerative Diseases, Rachel E. Lackie

Electronic Thesis and Dissertation Repository

In neurodegenerative diseases, certain proteins misfold and form toxic aggregates that cause brain matter atrophy, leading to decline in motor and/or cognitive functions. To maintain cellular proteostasis and survival, molecular chaperones regulate protein maturation and help to prevent aberrant protein aggregation. The molecular chaperone Hsp90 regulates hundreds of proteins and interestingly, several of those are misfolded in neurodegenerative diseases. Stress inducible-phosphoprotein-1 (STI1, STIP1), an Hsp90 co-chaperone, orchestrates client protein transfer between chaperones Hsp70 and Hsp90 through physical interactions with both chaperones. Notably, previous work in yeast, worms, and mouse neurons all showed that STI1 protects organisms against stressors and amyloid-like …


Characterizing The Effects Of Pyrroloquinoline Quinone (Pqq) Supplementation On Skeletal Muscle Mitochondrial Function And Myogenesis During Oxidative Stress And Iugr., Allyson J. Wood May 2021

Characterizing The Effects Of Pyrroloquinoline Quinone (Pqq) Supplementation On Skeletal Muscle Mitochondrial Function And Myogenesis During Oxidative Stress And Iugr., Allyson J. Wood

Electronic Thesis and Dissertation Repository

Intrauterine growth restriction (IUGR) affects 10-15% of births and is associated with placental insufficiency (PI), resulting in fetal oxidative stress (OS). This OS is a factor in the predisposition to postnatal noncommunicable disease (NCD) of which muscle mitochondrial dysfunctional is a key aspect. Pyrroloquinoline quinone (PQQ), an antioxidant-like compound, is capable of OS reduction and promotes mitochondrial function, though limited research has focused on its effects in in utero skeletal muscle. This study sought to investigate the impact of in vitro H2O2, a model of OS, and an in vivo model of OS associated IUGR, with …


Inwardly Rectifying Potassium Channels: Regulators Of Myogenic Tone In Cerebrovascular Smooth Muscle, Jacob Fletcher Apr 2021

Inwardly Rectifying Potassium Channels: Regulators Of Myogenic Tone In Cerebrovascular Smooth Muscle, Jacob Fletcher

Electronic Thesis and Dissertation Repository

In cerebral arteries, inwardly rectifying potassium channels (KIR) contribute to smooth muscle hyperpolarization to control arterial diameter and tone. Emerging evidence highlighted their regulation by pressure, though the underlying mechanism remains unclear. This thesis explored this concept through examination of KIR channels in mouse and rat cerebral vascular smooth muscle (VSM). Experiments progressed from isolated cells to whole animals, employing electrophysiology, immunocytochemistry, proximity ligation assay, and arterial spin-labelling MRI techniques. Initial experiments indicated that KIR activity persists beyond KIR2.1 knockout in smooth muscle, clarifying their molecular composition. Our subsequent study identified key structural components …