Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

The Role Of The Hypoxia-Inducible Factor 2 In Pancreatic Cancer: Mechanisms Of Tumor Immunosuppression And Intestinal Radioprotection, Carolina Garcia Garcia Aug 2022

The Role Of The Hypoxia-Inducible Factor 2 In Pancreatic Cancer: Mechanisms Of Tumor Immunosuppression And Intestinal Radioprotection, Carolina Garcia Garcia

Dissertations & Theses (Open Access)

Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with dismal prognosis. The only curative option for patients is surgery, but over 80% of patients are not surgical candidates. Unfortunately, PDAC is resistant to the three remaining options. PDAC is characterized by a profoundly hypoxic and immunosuppressive stroma, which contributes to its therapeutic recalcitrance. Alpha-smooth muscle actin+ (αSMA+) cancer-associated fibroblasts (CAFs) are the most abundant stromal component, as well as mediators of stromal deposition. The hypoxia-inducible factors (HIF1 and HIF2) coordinate responses to hypoxia, yet, despite their known association to poor patient outcomes, their functions within the PDAC tumor microenvironment (TME) …


Unraveling The Effects Of Aerobic Exercise And Erk5 Signaling In The Solid Tumor Microenvironment Using Murine Models, Hannah Savage Aug 2022

Unraveling The Effects Of Aerobic Exercise And Erk5 Signaling In The Solid Tumor Microenvironment Using Murine Models, Hannah Savage

Dissertations & Theses (Open Access)

Solid tumors are comprised of multiple cell types which communicate and work together to promote tumor progression. Advances in the treatment of solid tumors have armed clinicians with more efficacious pharmacologic agents and combinations. However, a focus on drug adjuvants in the treatment of solid cancer has left gaps in knowledge regarding non-pharmacologic treatment adjuvants, like aerobic exercise. The current dissertation investigates pharmacologic and non-pharmacologic based approaches to remodel the solid tumor microenvironment landscape and alter therapeutic efficacy. We disassemble compartments of the tumor microenvironment, including tumor vasculature and immune infiltrate, using mouse models and single cell techniques, to elucidate …