Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Life Sciences

Harnessing Exosomes As A Platform For Drug Delivery In Breast Cancer: A Systematic Review For In Vivo And In Vitro Studies, Abdulwahab Teflischi Gharavi, Saeed Irian, Azadeh Niknejad, Keykavous Parang, Mona Salimi Apr 2024

Harnessing Exosomes As A Platform For Drug Delivery In Breast Cancer: A Systematic Review For In Vivo And In Vitro Studies, Abdulwahab Teflischi Gharavi, Saeed Irian, Azadeh Niknejad, Keykavous Parang, Mona Salimi

Pharmacy Faculty Articles and Research

Breast cancer remains a significant global health concern, emphasizing the critical need for effective treatment strategies, especially targeted therapies. This systematic review summarizes the findings from in vitro and in vivo studies regarding the therapeutic potential of exosomes as drug delivery platforms in the field of breast cancer treatment. A comprehensive search was conducted across bibliographic datasets, including Web of Science, PubMed, and Scopus, using relevant queries from several related published articles and the Medical Subject Headings Database. Then, all morphological, biomechanical, histopathological, and cellular-molecular outcomes were systematically collected. A total of 30 studies were identified based on the Preferred …


A Study On Interactions Between Metal-Organic Frameworks And Biological Materials, Josh Phipps Dec 2022

A Study On Interactions Between Metal-Organic Frameworks And Biological Materials, Josh Phipps

Graduate Theses and Dissertations

Metal-organic frameworks or MOFs are an extremely useful tool in many areas of applications. Their popularity in recent years has arisen from their high efficiency in catalytic chemical reactions. This is made possible due to their porous interior and the ability of the MOFs components to be functionalized. These same traits make MOFs excellent for use in protein encapsulation or immobilization and have the potential to become excellent drug carriers. Their development in this utilization has been limited dramatically compared to MOFs chemical applications. This is due in part to the nature of biological processes taking longer to study, but …


Click-Free Synthesis Of A Multivalent Tricyclic Peptide As A Molecular Transporter, Sumit Kumar, Dindyal Mandal, Shaima Ahmed El-Mowafi, Saghar Mozaffari, Rakesh Kumar Tiwari, Keykavous Parang Sep 2020

Click-Free Synthesis Of A Multivalent Tricyclic Peptide As A Molecular Transporter, Sumit Kumar, Dindyal Mandal, Shaima Ahmed El-Mowafi, Saghar Mozaffari, Rakesh Kumar Tiwari, Keykavous Parang

Pharmacy Faculty Articles and Research

The cellular delivery of cell-impermeable and water-insoluble molecules remains an ongoing challenge to overcome. Previously, we reported amphipathic cyclic peptides c[WR]4 and c[WR]5 consisting of alternate arginine and tryptophan residues as nuclear-targeting molecular transporters. These peptides contain an optimal balance of positive charge and hydrophobicity, which is required for interactions with the phospholipid bilayer to facilitate their application as a drug delivery system. To further optimize them, we synthesized and evaluated a multivalent tricyclic peptide as an efficient molecular transporter. The monomeric cyclic peptide building blocks were synthesized using Fmoc/tBu solid-phase chemistry and cyclization in the …


Comparative Molecular Transporter Properties Of Cyclic Peptides Containing Tryptophan And Arginine Residues Formed Through Disulfide Cyclization, Eman H. M. Mohammed, Dindyal Mandal, Saghar Mozaffari, Magdy Abdel-Hamied Zahran, Amany Mostafa Osman, Rakesh Kumar Tiwari, Keykavous Parang Jun 2020

Comparative Molecular Transporter Properties Of Cyclic Peptides Containing Tryptophan And Arginine Residues Formed Through Disulfide Cyclization, Eman H. M. Mohammed, Dindyal Mandal, Saghar Mozaffari, Magdy Abdel-Hamied Zahran, Amany Mostafa Osman, Rakesh Kumar Tiwari, Keykavous Parang

Pharmacy Faculty Articles and Research

We have previously reported cyclic cell-penetrating peptides [WR]5 and [WR]4 as molecular transporters. To optimize further the utility of our developed peptides for targeted therapy in cancer cells using the redox condition, we designed a new generation of peptides and evaluated their cytotoxicity as well as uptake behavior against different cancer cell lines. Thus, cyclic [C(WR)xC] and linear counterparts (C(WR)xC), where x = 4–5, were synthesized using Fmoc/tBu solid-phase peptide synthesis, purified, and characterized. The compounds did not show any significant cytotoxicity (at 25 µM) against ovarian (SK-OV-3), leukemia (CCRF-CEM), gastric adenocarcinoma (CRL-1739), breast …


Development Of Novel Tumor-Targeted Compounds For Boron Neutron Capture Therapy, Micah John Luderer May 2019

Development Of Novel Tumor-Targeted Compounds For Boron Neutron Capture Therapy, Micah John Luderer

Arts & Sciences Electronic Theses and Dissertations

Glioblastoma multiforme (GBM) represents the most common primary brain tumor among adults. Despite surgical resection and aggressive chemoradiotherapy regimens, the current 2- and 5-year survival rates are only 27% and 9.8%, respectively. The low survival stems from the poor response to conventional therapy and underscores the critical need to develop new therapeutic approaches for GBM treatment. The high recurrence rate observed in GBM is in part attributed to the hypoxic (poorly oxygenated) tumor microenvironment. Hypoxic tumor conditions have been shown to increase metastasis, promote angiogenesis, and confer resistance to chemotherapy and radiation.

Hypoxic tissues are inherently radiation resistant due to …


Nanoparticle Orientation To Control Rna Loading And Ligand Display On Extracellular Vesicles For Cancer Regression, Fengmei Pi, Daniel W. Binzel, Tae Jin Lee, Zhefeng Li, Meiyan Sun, Piotr G. Rychahou, Hui Li, Farzin Haque, Shaoying Wang, Carlo M. Croce, Bin Guo, B. Mark Evers, Peixuan Guo Jan 2018

Nanoparticle Orientation To Control Rna Loading And Ligand Display On Extracellular Vesicles For Cancer Regression, Fengmei Pi, Daniel W. Binzel, Tae Jin Lee, Zhefeng Li, Meiyan Sun, Piotr G. Rychahou, Hui Li, Farzin Haque, Shaoying Wang, Carlo M. Croce, Bin Guo, B. Mark Evers, Peixuan Guo

Markey Cancer Center Faculty Publications

Nanotechnology offers many benefits, and here we report an advantage of applying RNA nanotechnology for directional control. The orientation of arrow-shaped RNA was altered to control ligand display on extracellular vesicle membranes for specific cell targeting, or to regulate intracellular trafficking of small interfering RNA (siRNA) or microRNA (miRNA). Placing membrane-anchoring cholesterol at the tail of the arrow results in display of RNA aptamer or folate on the outer surface of the extracellular vesicle. In contrast, placing the cholesterol at the arrowhead results in partial loading of RNA nanoparticles into the extracellular vesicles. Taking advantage of the RNA ligand for …


Applications Of Cell-Derived Vesicles: From Single Molecule Studies To Drug Delivery, Faruk H. Moonschi Jan 2018

Applications Of Cell-Derived Vesicles: From Single Molecule Studies To Drug Delivery, Faruk H. Moonschi

Theses and Dissertations--Chemistry

Single molecule studies can provide information of biological molecules which otherwise is lost in ensemble studies. A wide variety of fluorescence-based techniques are utilized for single molecule studies. While these tools have been widely applied for imaging soluble proteins, single molecule studies of transmembrane proteins are much more complicated. A primary reason for this is that, unlike membrane proteins, soluble proteins can be easily isolated from the cellular environment. One approach to isolate membrane proteins into single molecule level involves a very low label expression of the protein in cells. However, cells generate background fluorescence leading to a very low …


Targeted And Controlled Anticancer Drug Delivery And Release With Magnetoelectric Nanoparticles, Alexandra Rodzinski Nov 2016

Targeted And Controlled Anticancer Drug Delivery And Release With Magnetoelectric Nanoparticles, Alexandra Rodzinski

FIU Electronic Theses and Dissertations

A major challenge of cancer treatment is successful discrimination of cancer cells from healthy cells. Nanotechnology offers multiple venues for efficient cancer targeting. Magnetoelectric nanoparticles (MENs) are a novel, multifaceted, physics-based cancer treatment platform that enables high specificity cancer targeting and externally controlled loaded drug release. The unique magnetoelectric coupling of MENs allows them to convert externally applied magnetic fields into intrinsic electric signals, which allows MENs to both be drawn magnetically towards the cancer site and to electrically interface with cancer cells. Once internalized, the MEN payload release can be externally triggered with a magnetic field. MENs uniquely allow …


Cationic Cell-Penetrating Peptides Are Potent Furin Inhibitors, Bruno Ramos-Molina, Adam N. Lick, Amir Nasrolahi Shirazi, Donghoon Oh, Rakesh Tiwari, Naglaa Salem El-Sayed, Keykavous Parang, Iris Lindberg Jun 2015

Cationic Cell-Penetrating Peptides Are Potent Furin Inhibitors, Bruno Ramos-Molina, Adam N. Lick, Amir Nasrolahi Shirazi, Donghoon Oh, Rakesh Tiwari, Naglaa Salem El-Sayed, Keykavous Parang, Iris Lindberg

Pharmacy Faculty Articles and Research

Cationic cell-penetrating peptides have been widely used to enhance the intracellular delivery of various types of cargoes, such as drugs and proteins. These reagents are chemically similar to the multi-basic peptides that are known to be potent proprotein convertase inhibitors. Here, we report that both HIV-1 TAT47-57 peptide and the Chariot reagent are micromolar inhibitors of furin activity in vitro. In agreement, HIV-1 TAT47-57 reduced HT1080 cell migration, thought to be mediated by proprotein convertases, by 25%. In addition, cyclic polyarginine peptides containing hydrophobic moieties which have been previously used as transfection reagents also exhibited potent furin inhibition in vitro …


Ruthenium Complexes As Dna Photonucleases In Treatment Of Malignant Skin Carcinoma, Devi Kalyan Karumanchi Oct 2010

Ruthenium Complexes As Dna Photonucleases In Treatment Of Malignant Skin Carcinoma, Devi Kalyan Karumanchi

All Capstone Projects

A variety of Ruthenium complexes possessing terpyridine complexes as ligands in their coordination sphere have been investigated extensively as DNA photo nucleases in vitro. This work has led to the realization that compounds of Ruthenium bind to DNA purines and that the interactions are of an unprecedented bridging variety. Owing to the molar absorptivity of these complexes in the visible region, direct cleavage of duplex DNA by these complexes requires irradiation in the range of 400-500 nm.

Although the observation of DNA photo cleavage in vitro makes these systems good candidates for further investigation, it does not provide any information …