Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Life Sciences

Mecp2 Binds To Nucleosome Free (Linker Dna) Regions And To H3k9/H3k27 Methylated Nucleosomes In The Brain, Anita A. Thambirajah, Marlee K. Ng, Lindsay J. Frehlick, Andra Li, Jason J. Serpa, Evgeniy V. Petrotchenko, Begonia Silva-Moreno, Kristal K. Missiaen, Christoph H. Borchers, J. Adam Hall, Ryan Mackie, Frank Lutz, Brent E. Gowen, Michael Hendzel, Philippe T. Georgel, Juan Ausió Apr 2019

Mecp2 Binds To Nucleosome Free (Linker Dna) Regions And To H3k9/H3k27 Methylated Nucleosomes In The Brain, Anita A. Thambirajah, Marlee K. Ng, Lindsay J. Frehlick, Andra Li, Jason J. Serpa, Evgeniy V. Petrotchenko, Begonia Silva-Moreno, Kristal K. Missiaen, Christoph H. Borchers, J. Adam Hall, Ryan Mackie, Frank Lutz, Brent E. Gowen, Michael Hendzel, Philippe T. Georgel, Juan Ausió

Philippe T. Georgel

Methyl-CpG-binding protein 2 (MeCP2) is a chromatin-binding protein that mediates transcriptional regulation, and is highly abundant in brain. The nature of its binding to reconstituted templates has been well characterized in vitro. However, its interactions with native chromatin are less understood. Here we show that MeCP2 displays a distinct distribution within fractionated chromatin from various tissues and cell types. Artificially induced global changes in DNA methylation by 3-aminobenzamide or 5-aza-2′-deoxycytidine, do not significantly affect the distribution or amount of MeCP2 in HeLa S3 or 3T3 cells. Most MeCP2 in brain is chromatin-bound and localized within highly nuclease-accessible regions. We …


The Role Of Ash1l During Human Neurodevelopment, Anna Bagnell Apr 2019

The Role Of Ash1l During Human Neurodevelopment, Anna Bagnell

Senior Theses

Autism spectrum disorders (ASD) are associated with defects in neuronal connectivity and are highly heritable. A significant proportion of ASD cases are of complex genetic etiology; complexity which might reflect the impact of gene-environment interactions. However, there is a gap in our understanding of the mechanisms that underlie the gene-environment interaction in autism complex etiology. Genome wide association studies in large ASD cohorts identified high risk variants associated with autism in genes that regulate histone modifications and remodel chromatin. These findings highlight the relevance of chromatin regulatory mechanisms in the pathology of ASD. Changes in Histone H3 methylation have been …


Identification And Characterization Of Barrier Insulator Activity In The T-Cell Receptor Alpha Locus Control Region, Gayathri Devi Raghupathy Feb 2019

Identification And Characterization Of Barrier Insulator Activity In The T-Cell Receptor Alpha Locus Control Region, Gayathri Devi Raghupathy

Dissertations, Theses, and Capstone Projects

Genes of different spatiotemporal expression profiles are often juxtaposed in the genome. This organization raises risks of cross-regulatory influences from neighboring genes; for instance heterochromatin can spread over euchromatin or long-range acting enhancers can inappropriately activate genes. Gene regulatory elements such as Locus Control Regions (LCR) and Insulators prevent such cross-communications and allow for normal gene expression patterns. In transgenic systems, LCRs limit influences from surrounding chromatin by providing site-of-integration independent and specific spatiotemporal expression upon a linked transgene. The field’s understanding of the ability of an LCR to overcome chromatin influences and allow site-of-integration independent expression is minimal. Interestingly, …


Functional Analysis Of The Replication Fork Proteome Identifies Bet Proteins As Pcna Regulators, Sarah R. Wessel, Kareem N. Mohni, Jessica W. Luzwick, Huzefa Dungrawala, David Cortez Jan 2019

Functional Analysis Of The Replication Fork Proteome Identifies Bet Proteins As Pcna Regulators, Sarah R. Wessel, Kareem N. Mohni, Jessica W. Luzwick, Huzefa Dungrawala, David Cortez

Molecular Biosciences Faculty Publications

Identifying proteins that function at replication forks is essential to understanding DNA replication, chromatin assembly, and replication-coupled DNA repair mechanisms. Combining quantitative mass spectrometry in multiple cell types with stringent statistical cutoffs, we generated a high-confidence catalog of 593 proteins that are enriched at replication forks and nascent chromatin. Loss-of-function genetic analyses indicate that 85% yield phenotypes that are consistent with activities in DNA and chromatin replication or already have described functions in these processes. We illustrate the value of this resource by identifying activities of the BET family proteins BRD2, BRD3, and BRD4 in controlling DNA replication. These proteins …