Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

The Immunogenicity Of Dendritic Cell-Derived Exosomes, Ben Quah, Helen O'Neill Dec 2004

The Immunogenicity Of Dendritic Cell-Derived Exosomes, Ben Quah, Helen O'Neill

Helen O'Neill

Exosome production represents an alternate endocytic pathway for secretion. Multivesicular endosomes (MVE) fuse with the plasma membrane expelling internal vesicles or exosomes from cells. Exosome production has been recently described for immune cells including B cells, dendritic cells (DC), mast cells, macrophages and T cells. Exosomes derived from some DC populations stimulate T lymphocyte proliferation in vitro and have potent capacity to generate anti-tumour immune responses in vivo. These reported studies have involved in vitro grown mature DC expanded from precursors with cytokines. However, immature DC produce higher numbers of exosomes than mature DC and this is thought to be …


Maturation Requirements For Dendritic Cells In T Cell Stimulation Leading To Tolerance Versus Immunity, Helen O'Neill, Jonathan Tan Dec 2004

Maturation Requirements For Dendritic Cells In T Cell Stimulation Leading To Tolerance Versus Immunity, Helen O'Neill, Jonathan Tan

Helen O'Neill

The model that dendritic cell (DC) "maturation" describes the change from an immature, antigen-capturing cell to a mature, antigen-presenting cell is well-established. Classification of DCs in terms of function has been problematic previously. It is therefore proposed that mature and not immature DCs are responsible for antigen presentation and stimulation of T cells. Furthermore, DC antigen presentation to T cells can have two outcomes: tolerance or immunity. The particular outcomes appear to be determined by the activation state of the mature DC. DCs can be activated by a range of environmental stimuli or "danger signals". Here, the hypothesis is advanced …