Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Life Sciences

Sufu In Shh Signalling Mediated Myogenesis, Suleyman Abdullah Dec 2023

Sufu In Shh Signalling Mediated Myogenesis, Suleyman Abdullah

Electronic Thesis and Dissertation Repository

Myogenesis is defined as the formation of skeletal muscle tissue during embryonic development and involves a multitude of cellular signalling pathways. Among these include the Sonic hedgehog (Shh) signalling pathway which must be deactivated for differentiation into muscle cells to occur. However, less is known regarding the pathways operation during cell differentiation and whether Suppressor of Fused (SUFU), the protein inhibitor of Shh signalling, plays a role. To address this, mouse C2C12 myoblast cells were utilized as a model and differentiated into muscle cells to identify the presence of SUFU during this time. Experiments in qRT-PCR show a decrease in …


Developmental Changes In Electrophysiological Properties Of Auditory Cortical Neurons In The Cntnap2 Knockout Rat, Rajkamalpreet S Mann, Brian L Allman, Susanne Schmid Apr 2023

Developmental Changes In Electrophysiological Properties Of Auditory Cortical Neurons In The Cntnap2 Knockout Rat, Rajkamalpreet S Mann, Brian L Allman, Susanne Schmid

Anatomy and Cell Biology Publications

Disruptions in the CNTNAP2 gene are known to cause language impairments and symptoms associated with autism spectrum disorder (ASD). Importantly, knocking out this gene in rodents results in ASD-like symptoms that include auditory processing deficits. This study used in vitro patch-clamp electrophysiology to examine developmental alterations in auditory cortex pyramidal neurons of Cntnap2-/- rats, hypothesizing that CNTNAP2 is essential for maintaining intrinsic neuronal properties and synaptic wiring in the developing auditory cortex. Whole cell patch-clamp recordings were conducted in wildtype and Cntnap2-/- littermates at three postnatal age ranges (P8-12, P18-21, and …


Spatiotemporal Characterization Of The Prr12 Paralogues In Zebrafish, Renee Jeannine Resendes Feb 2022

Spatiotemporal Characterization Of The Prr12 Paralogues In Zebrafish, Renee Jeannine Resendes

Electronic Thesis and Dissertation Repository

Pathogenic variants in the human PRR12 (Proline Rich 12) gene are associated with PRR12-related Neuroocular Syndrome. However, little is known about the gene/protein function. The zebrafish was utilized to address this, as its attributes place it as a premier model to study genes involved in human development and disease. In situ hybridization and RT-PCR of embryos and larvae, and qRT-PCR of adult tissues revealed the spatial and temporal distributions of the prr12 paralogues: prr12a and prr12b. Both paralogues were detected from the maternal and zygotic transcriptomes in a global and diffuse expression pattern, and there was enrichment …


A Systematic Review Of Brainstem Contributions To Autism Spectrum Disorder, Ala Seif, Carly Shea, Susanne Schmid, Ryan A Stevenson Jan 2021

A Systematic Review Of Brainstem Contributions To Autism Spectrum Disorder, Ala Seif, Carly Shea, Susanne Schmid, Ryan A Stevenson

Anatomy and Cell Biology Publications

Autism spectrum disorder (ASD) is a neurodevelopmental disorder that affects one in 66 children in Canada. The contributions of changes in the cortex and cerebellum to autism have been studied for decades. However, our understanding of brainstem contributions has only started to emerge more recently. Disruptions of sensory processing, startle response, sensory filtering, sensorimotor gating, multisensory integration and sleep are all features of ASD and are processes in which the brainstem is involved. In addition, preliminary research into brainstem contribution emphasizes the importance of the developmental timeline rather than just the mature brainstem. Therefore, the purpose of this systematic review …


The Role Of Xenopus Laevis Reck In Ecm Remodeling And Tissue Patterning, Jessica Willson Nov 2019

The Role Of Xenopus Laevis Reck In Ecm Remodeling And Tissue Patterning, Jessica Willson

Electronic Thesis and Dissertation Repository

Proper cell-cell and cell-extracellular matrix (ECM) interactions are vital for cell migration and patterning of the vertebrate embryo. Matrix metalloproteinases (MMPs) and their inhibitors, reversion-inducing cysteine-rich proteins with Kazal motifs (RECK) and tissue inhibitors of metalloproteinases (TIMPs), are all differentially expressed during embryogenesis to regulate such ECM remodeling events and cell interactions. While TIMPs are a family of 4 secreted proteins that share overlapping substrate specificities of MMPs, RECK is unique in that it is a membrane-anchored MMP inhibitor that is embryonic lethal in mice. I used Xenopus laevis as a model organism to investigate the role of RECK as …


The Role Of Connexins And Pannexins In Mammary Gland Development And Tumorigenesis, Michael K. G. Stewart Aug 2015

The Role Of Connexins And Pannexins In Mammary Gland Development And Tumorigenesis, Michael K. G. Stewart

Electronic Thesis and Dissertation Repository

The identification of key regulators of breast cancer onset and progression is critical for the development of targeted therapies. Connexins and pannexins are characterized by their ability to form large-pore channels and are frequently dysregulated in cancer. However, their role in breast cancer progression remains poorly understood due to a lack of in vivo models capable of assessing the proposed and opposing roles of connexins and pannexins as both tumor suppressors and/or facilitators in multiple stages of the disease. Using 2 previously uncharacterized genetically-modified mice, connexin43 (Cx43) and connexin26 (Cx26) were evaluated for their role in normal mammary gland development …


Developmental Characterization Of Tissue Inhibitor Of Metalloproteinase Domain Functions In Xenopus Laevis, Michelle A. Nieuwesteeg Sep 2013

Developmental Characterization Of Tissue Inhibitor Of Metalloproteinase Domain Functions In Xenopus Laevis, Michelle A. Nieuwesteeg

Electronic Thesis and Dissertation Repository

During development the extracellular matrix is cleaved and remodeled to facilitate the large-scale cell rearrangements that are necessary for processes like gastrulation, neurulation, angiogenesis and organogenesis. ECM remodeling occurs primarily through secreted enzymes called matrix metalloproteinases (MMPs). Regulation of MMP activity is achieved through the tissue inhibitor of metalloproteinases (TIMPs), a small family of secreted proteins that bind MMPs in a 1:1 manner to inhibit their activity. Although TIMPs were originally characterized based on their MMP-inhibitory activities, in vitro studies have revealed that TIMPs are multifunctional proteins, with structurally and functionally distinct N- and C-terminal domains. TIMP N-terminal domains bind …


Cloning And Analysis Of Reck During Early Xenopus Laevis Development, Jessica Willson Nov 2012

Cloning And Analysis Of Reck During Early Xenopus Laevis Development, Jessica Willson

Electronic Thesis and Dissertation Repository

Extracellular matrix (ECM) remodeling is crucial for the development and maintenance of multicellular organisms. Degradation of ECM components occurs through the activity of matrix metalloproteinases (MMPs) and their inhibitors. Reversion-inducing cysteine-rich protein with Kazal motifs (RECK) gene encodes a membrane-anchored protein and plays an important role in mediating ECM remodeling by inhibiting MMPs. To date, few in vivo studies exist examining RECK during development. The present study focuses on cloning and examining the expression of RECK during early Xenopus laevis development. A mature cDNA clone of the RECK gene was generated. RT-PCR, in situ hybridization, and immunohistochemistry were used to …


The Developmental And Adaptive Role Of Mitogen Activated Protein Kinase Pathways During Preimplantation Development, Christine E. Bell Mar 2012

The Developmental And Adaptive Role Of Mitogen Activated Protein Kinase Pathways During Preimplantation Development, Christine E. Bell

Electronic Thesis and Dissertation Repository

The preimplantation period of development represents the highest interval of embryonic loss throughout pregnancy. It is therefore imperative that we elucidate the mechanisms involved in regulating preimplantation embryonic responses to stress and that govern development. The MAPK pathways are involved in both responding to environmental stress and regulation of development throughout embryogenesis, and are therefore good candidates to study the mechanisms involved in preimplantation embryonic adaptation to stress and development. The preimplantation embryo culminates in the development of a fluid filled structure called the blastocyst. It is at this stage the first differentiation events occur and the trophectoderm (TE), which …