Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Life Sciences

Uptake And Localization Of Poly(2-Vinyl-4,4-Dimethyl Azlactone) Modified With Rhodamine- And Coumarin-Based Molecules In Human Embryonic Kidney (Hek293) Cells, Garrett Tassin May 2023

Uptake And Localization Of Poly(2-Vinyl-4,4-Dimethyl Azlactone) Modified With Rhodamine- And Coumarin-Based Molecules In Human Embryonic Kidney (Hek293) Cells, Garrett Tassin

Honors Theses

Fluorescence microscopy is a bioimaging technology that utilizes the excitation and emission of fluorophores to identify cellular structures, processes, and interactive events. Natural and synthetic organic dyes are frequently used in fluorescence microscopy techniques for imaging, therapeutic, and biomedical applications. It is also employed in the development of novel organic dyes for innovative methods of drug delivery and labelling. In this study, we investigate the behavior of an organic dye consisting of the post-polymerization modification of poly(2-vinyl-4,4-dimethyl azlactone) (PVDMA) with tetramethyl rhodamine cadaverine (TMR) and a coumarin-based molecule (DBAC). Using cultured HEK293 cells and fluorescence confocal microscopy, we show the …


Molecular Characterization Of Galectin From Amblyomma Americanum In Context Of Α-Gal Syndrome, Sumar Beauti May 2021

Molecular Characterization Of Galectin From Amblyomma Americanum In Context Of Α-Gal Syndrome, Sumar Beauti

Honors Theses

The lone star tick Amblyomma americanum is a vector of various disease-causing pathogens and tick-borne alpha-gal syndrome (AGS) with rapidly expanding populations in the south- and northeast regions of the United States. This study aimed to molecularly characterize galectin and determine its involvement in galactose-α-1,3-galactose (α-gal) synthesis, transport, reproductive fitness, and microbial homeostasis in this tick. The lone star tick galectin possesses two conserved carbohydrate recognition domains and shares homology with other Ixodid tick galectins. Time and tissue-dependent expression data shows that galectin is constantly expressed in salivary glands, midgut, and ovary tissues. An RNA interference approach was used to …


Evaluating Biogenesis Of 5’-Tailed Mirtrons, Jonathan D. Hoover May 2020

Evaluating Biogenesis Of 5’-Tailed Mirtrons, Jonathan D. Hoover

Honors Theses

MicroRNAs are 22 nucleotide, non-coding RNAs that serve as substrates for Argonaute proteins to induce RNA interference pathways. Intron-derived miRNA precursors called “mirtrons” have been identified and classified primarily through deep sequencing methods. Unlike most miRNAs, mirtrons are derived from splicing events and also exhibit high levels of post-transcriptional nucleotide addition to hairpin precursors. Most relevant among these modifications is 3’ uridylation as it inhibits mirtron biogenesis in multiple model systems. Mirtrons may also possess additional nucleotides adjacent to the pre-miRNA hairpin at the 3’ and/or 5’ ends. These nucleotide “tails” are removed prior to Dicer cleaving the hairpin. In …


Investigating Roles For Rna Turnover Processes In Cell Signaling Through Drosophila Melanogaster Genetic Mosaics, Sudiksha Rathan Kumar May 2020

Investigating Roles For Rna Turnover Processes In Cell Signaling Through Drosophila Melanogaster Genetic Mosaics, Sudiksha Rathan Kumar

Honors Theses

The process of cell signaling is vital in organisms for proper development as it determines the fate and function of cells. This process is highly regulated by myriad interactions between signaling pathway components and gene expression mechanisms. RNA turnover is a type of RNA processing that degrades RNA. It plays an essential role in homeostasis and environmental changes; however, its influence on signaling pathways is currently unknown. In the present study, the effect of RNA turnover processes on cell signaling was analyzed using the genetic mosaics in Drosophila melanogaster. Fly mosaics were created by breeding RNAi lines targeting cellular …


Mouse Embryonic Stem Cells Are Sensitive To The Cytotoxicity Of Nitric Oxide: Biological Implications For Early Embryogenesis, Mckenzie C. Hargis May 2020

Mouse Embryonic Stem Cells Are Sensitive To The Cytotoxicity Of Nitric Oxide: Biological Implications For Early Embryogenesis, Mckenzie C. Hargis

Honors Theses

The early embryo, before implantation, is at a very vulnerable stage in development where it faces various inflammatory cytokines throughout the implantation process. In this stage, the cells in the blastocyst, the preimplantation stage embryo, must proliferate rapidly for tissue formation. However, it is known that inflammatory cytokines can inhibit cell proliferation. Previous studies have shown that embryonic stem cells (mESCs), the major cell component in the blastocyst, are unresponsive to treatments of tumor necrosis factor ⍺ (TNF⍺) and interferon 𝛾 (IFN𝛾), two inflammatory cytokines involved in the implantation process. Treatment of mESC-differentiated fibroblasts (mESC-FBs) with TNF⍺ and IFN𝛾 in …


The Subcloning And Expression Of Munc18a In Escherichia Coli For Antibody Production And Analysis In Mast Cell Degranulation Reactions, Brandi Goble May 2018

The Subcloning And Expression Of Munc18a In Escherichia Coli For Antibody Production And Analysis In Mast Cell Degranulation Reactions, Brandi Goble

Honors Theses

Mast cells are secretory cells responsible for fighting off infection through the early recognition of pathogens. This process is completed through the secretion of proinflammatory mediators that are stored in secretory granules within the cytoplasm of the cell. The degranulation secretion process relies on regulated fusion of secretory granules to the cell membrane via membrane-bound SNARE proteins that bridges the two opposed membranes. The intricate regulation of SNARE-mediated mast cell degranulation is not well understood. However, Sec1/Munc18 (SM) proteins, specifically the Munc18 isoforms, are known to play a critical role in the process (Brochetta, et. al., 2014). The Xu lab …


The Uas-Gal4 System In D. Melanogaster: An Insight Into The Influence Of Micrornas On The Developmental Pathways Of The Wing, Emily R. Wilson May 2016

The Uas-Gal4 System In D. Melanogaster: An Insight Into The Influence Of Micrornas On The Developmental Pathways Of The Wing, Emily R. Wilson

Honors Theses

By examining genetic pathways in D. melanogaster, a better understanding of the homologous regulatory mechanisms in humans can be utilized to further enhance knowledge of the roles of microRNA within development. This study utilizes the UAS-Gal4 system in order to produce a mutant phenotype capable of being visually studied and analyzed, focusing on the developmental pathway of the wing in D. melanogaster. Dissections of the wandering third instar larvae yielded wing disc tissue expressing the downregulation of loquacious and CG17386.


Characterization Of Embryonic Stem Cell-Differentiated Cells As Mesenchymal Stem Cells, Rachael N. Kuehn Dec 2015

Characterization Of Embryonic Stem Cell-Differentiated Cells As Mesenchymal Stem Cells, Rachael N. Kuehn

Honors Theses

Embryonic stem cells (ESCs), due to their ability to differentiate into different cell types while still maintaining a high proliferation capacity, have been considered as a potential cell source in regenerative medicine. However, current ESC differentiation methods are low yielding and create heterogeneous cell populations. If transplanted in the human body, differentiated ESCs could be rejected by the immune system, form tumors, or may not function normally within the human body. On the other hand, mesenchymal stem cells (MSCs), a type of adult stem cell typically derived from bone marrow, have proved to be excellent candidates in clinical applications due …


Activation Of Nf-Κb Transcription Factor During In Vitro Differentiation Of Mouse Embryonic Stem Cells, Natalya A. Ortolano May 2015

Activation Of Nf-Κb Transcription Factor During In Vitro Differentiation Of Mouse Embryonic Stem Cells, Natalya A. Ortolano

Honors Theses

Embryonic stem cells (ESCs) are a promising cell source for regenerative medicine. However, recent studies indicated that ESCs and ESC-derived cells (ESC-DCs) lack functional innate immunity against various pathogens and inflammatory cytokines. This presents a barrier to clinical application, as ESC-DCs would be placed in a wound site and exposed to pathogens and inflammatory cytokines. Using mouse ESCs (mESCs) as a model, we recently demonstrated that they are deficient in expressing type I interferons (IFN) and inflammatory cytokines. To determine the molecular basis for this finding, this study examined the activation state of nuclear factor-κB (NF-κB), a transcription factor that …


Subcloning And Expression Of Complexin Isoforms Involved In Mast Cell Degranulation, Cameron Blake King May 2014

Subcloning And Expression Of Complexin Isoforms Involved In Mast Cell Degranulation, Cameron Blake King

Honors Theses

Mast cells play an important role in the immune system by releasing chemicals such as chemokines and cytokines once they are stimulated. These products are released after stimulation by a process called mast cell degranulation. Mast cell degranulation is accomplished when vesicles containing the chemicals inside the mast cell fuse with the mast cell membrane via SNARE-mediated (Soluble NSF Attachment Protein Receptors) membrane fusion. This family of proteins consists of syntaxin, SNAP 25-like protein, and synaptobrevin/VAMP (Vesicle Associated Membrane Protein)(2). Comlexin isoforms (complexin 1,2,3,and 4) have been known to regulate this system in a fashion that is still unclear. In …


Investigating The Co-Regulatory Role Of Midline And Extramacrochaetae In Regulating Eye Development And Vision In Drosophila Melanogaster, Lillian M. Forstall May 2014

Investigating The Co-Regulatory Role Of Midline And Extramacrochaetae In Regulating Eye Development And Vision In Drosophila Melanogaster, Lillian M. Forstall

Honors Theses

The Honors thesis research focused on the roles of extramacrochaetae and midline in regulating eye development and the vision of Drosophila melanogaster. It is known from previous studies that extramacrochaetae (emc) and midline (mid) independently regulate the formation of ommatidial units in the Drosophila compound eye. However, the thesis focuses on the interaction of these two genes and their co-dependent roles in regulating eye development. This study also attempts to explain the recovered formation of ommatidial units and interommatidial bristles when the expression of both of these genes is reduced and whether flies doubly mutant …


Developmental Expression Profile Of Bric Á Brac 2, Midline And H15 In The Developing Eye And Central Nervous System Of Drosophila Melanogaster, Petra Visic Aug 2013

Developmental Expression Profile Of Bric Á Brac 2, Midline And H15 In The Developing Eye And Central Nervous System Of Drosophila Melanogaster, Petra Visic

Honors Theses

Aberrant activity of a single gene can lead towards development of cancerous cells. Drosophila melanogaster is a useful model system to study cancer because there is high degree of evolutionary conservation in signaling pathways between humans and flies that play major roles in regulating cell proliferation and growth (Miles et al., 2011). At The University of Southern Mississippi (USM), Dr. Leal’s lab has gathered evidence suggesting that bab1 and bab2 interact with the T-box gene midline (mid) and its paralog H15, while the early developmental function of bab1 and bab2 remains unknown. That is why elucidating the early …