Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Life Sciences

U-251mg Spheroid Generation Using A Scaffold Based Method Protocol, Lara J. Carroll, Brijesh K. Tiwari, James F. Curtin, Janith Wanigasekara May 2021

U-251mg Spheroid Generation Using A Scaffold Based Method Protocol, Lara J. Carroll, Brijesh K. Tiwari, James F. Curtin, Janith Wanigasekara

Articles

3D cell culture is a technique that is used to grow cells in vitro that will mimic an in vivo environment. 3D cell models are a helpful learning tool for researchers to better understand disease mechanisms and to explore different therapeutic properties of drugs. 3D cell cultures can be developed using patient derived cancer cells. Once they have been grown, these 3D cells can be used to screen for small molecule drugs or for genetic modification in for analysis of disease pathways or to predict drug treatments toxicity or efficacy. 3D cell cultures are a big step towards the more …


U-251mg Spheroid Generation Using Low Attachment Plate Method Protocol, Lara J. Carroll, Brijesh K. Tiwari, James F. Curtin, Janith Wanigasekara May 2021

U-251mg Spheroid Generation Using Low Attachment Plate Method Protocol, Lara J. Carroll, Brijesh K. Tiwari, James F. Curtin, Janith Wanigasekara

Articles

3D cell culture is a process used to grow cells in vitro to mimic an in vivo environment. 3D cell models are very useful for understanding disease mechanisms and exploring drug therapeutics. 3D cultures can be grown from cells taken from cancer organoids in patients. Once grown, they can be used to screen for small molecule drugs or they can be genetically modified in order to analyse disease pathways or predict the toxicity or efficacy of a drug treatment. These cultures decrease the need to use animals in research and provides more reliable results as it uses human physiology. This …


U-251mg Spheroid Generation Using Hanging Drop Method Protocol, Lara J. Carroll, Brijesh K. Tiwari, James F. Curtin, Janith Wanigasekara May 2021

U-251mg Spheroid Generation Using Hanging Drop Method Protocol, Lara J. Carroll, Brijesh K. Tiwari, James F. Curtin, Janith Wanigasekara

Articles

The use of 3D cell culture has been a major step in developing cellular models that can mimic physiological tissues. Traditional 2D cell cultures are often unable to accurately represent the cellular functions and responses that are present in tissues, as a result, research findings based on 2D cultures tend to be skewed with limited predictive capability. 3D cell cultures can be grown from cells obtained from cancer organoids in patients. These models are useful for understanding disease mechanisms and exploring drug therapeutics in areas such as toxicity and efficacy. In order to gather more physiologically relevant data, a variety …


Monitoring Stem Cell Differentiation Using Raman Microspectroscopy: Chondrogenic Differentiation, Towards Cartilage Formation, Francesca Ravera, Esen Efeoglu, Hugh Byrne Jan 2021

Monitoring Stem Cell Differentiation Using Raman Microspectroscopy: Chondrogenic Differentiation, Towards Cartilage Formation, Francesca Ravera, Esen Efeoglu, Hugh Byrne

Articles

Mesenchymal Stem Cells (MSCs) have the ability to differentiate into chondrocytes, the only cellular components of cartilage and are therefore ideal candidates for cartilage and tissue repair technologies. Chondrocytes are surrounded by cartilage-like extracellular matrix (ECM), a complex network rich in glycosaminoglycans, proteoglycans, and collagen, which, together with a multitude of intracellular signalling molecules, trigger the chondrogenesis and allow the chondroprogenitor to acquire the spherical morphology of the chondrocytes. However, although the mechanisms of the differentiation of MSCs have been extensively explored, it has been difficult to provide a holistic picture of the process, in situ. Raman Micro Spectroscopy (RMS) …