Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Impaired M3 And Enhanced M2 Muscarinic Receptor Contractile Function In A Streptozotocin Model Of Mouse Diabetic Urinary Bladder, K. J. Pak, Rennolds S. Ostrom, M. Matsui, F. J. Ehlert Jan 2010

Impaired M3 And Enhanced M2 Muscarinic Receptor Contractile Function In A Streptozotocin Model Of Mouse Diabetic Urinary Bladder, K. J. Pak, Rennolds S. Ostrom, M. Matsui, F. J. Ehlert

Pharmacy Faculty Articles and Research

We investigated the contractile roles of M2 and M3 muscarinic receptors in urinary bladder from streptozotocin-treated mice. Wild-type and M2 muscarinic receptor knockout (M2 KO) mice were given a single injection of vehicle or streptozotocin (125 mg kg−1) 2–24 weeks prior to bladder assays. The effect of forskolin on contractions elicited to the muscarinic agonist, oxotremorine-M, was measured in isolated urinary bladder (intact or denuded of urothelium). Denuded urinary bladder from vehicle-treated wild-type and M2 KO mice exhibited similar contractile responses to oxotremorine-M, when contraction was normalized relative to that elicited by KCl (50 mM). Eight to 9 weeks after …


Chemosensitization Of Cancer Cells By Sirna Using Targeted Nanogel Delivery, Erin B. Dickerson, William H. Blackburn, Michael H. Smith, Laura B. Kapa, L. Andrew Lyon, John F. Mcdonald Jan 2010

Chemosensitization Of Cancer Cells By Sirna Using Targeted Nanogel Delivery, Erin B. Dickerson, William H. Blackburn, Michael H. Smith, Laura B. Kapa, L. Andrew Lyon, John F. Mcdonald

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Background: Chemoresistance is a major obstacle in cancer treatment. Targeted therapies that enhance cancer cell sensitivity to chemotherapeutic agents have the potential to increase drug efficacy while reducing toxic effects on untargeted cells. Targeted cancer therapy by RNA interference (RNAi) is a relatively new approach that can be used to reversibly silence genes in vivo by selectively targeting genes such as the epidermal growth factor receptor (EGFR), which has been shown to increase the sensitivity of cancer cells to taxane chemotherapy. However, delivery represents the main hurdle for the broad development of RNAi therapeutics.

Methods: We report here …