Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 23 of 23

Full-Text Articles in Life Sciences

Novel Allosteric Effectors Targeting Human Transcription Factor Tead, Mayar Terek Ibrahim, Gennady M. Verkhivker, Jyoti Misra, Peng Tao May 2023

Novel Allosteric Effectors Targeting Human Transcription Factor Tead, Mayar Terek Ibrahim, Gennady M. Verkhivker, Jyoti Misra, Peng Tao

Mathematics, Physics, and Computer Science Faculty Articles and Research

The Hippo pathway is an evolutionary conserved signaling network involved in several cellular regulatory processes. Dephosphorylation and overexpression of Yes-associated proteins (YAPs) in the Hippo-off state are common in several types of solid tumors. YAP overexpression results in its nuclear translocation and interaction with transcriptional enhanced associate domain 1-4 (TEAD1-4) transcription factors. Covalent and non-covalent inhibitors have been developed to target several interaction sites between TEAD and YAP. The most targeted and effective site for these developed inhibitors is the palmitate-binding pocket in the TEAD1-4 proteins. Screening of a DNA-encoded library against the TEAD central pocket was performed experimentally to …


Conformational Flexibility And Local Frustration In The Functional States Of The Sars-Cov-2 Spike B.1.1.7 And B.1.351 Variants: Mutation-Induced Allosteric Modulation Mechanism Of Functional Dynamics And Protein Stability, Gennady M. Verkhivker Jan 2022

Conformational Flexibility And Local Frustration In The Functional States Of The Sars-Cov-2 Spike B.1.1.7 And B.1.351 Variants: Mutation-Induced Allosteric Modulation Mechanism Of Functional Dynamics And Protein Stability, Gennady M. Verkhivker

Mathematics, Physics, and Computer Science Faculty Articles and Research

Structural and functional studies of the SARS-CoV-2 spike proteins have recently determined distinct functional states of the B.1.1.7 and B.1.351 spike variants, providing a molecular framework for understanding the mechanisms that link the effect of mutations with the enhanced virus infectivity and transmissibility. A detailed dynamic and energetic analysis of these variants was undertaken in the present work to quantify the effects of different mutations on functional conformational changes and stability of the SARS-CoV-2 spike protein. We employed the efficient and accurate coarse-grained (CG) simulations of multiple functional states of the D614G mutant, B.1.1.7 and B.1.351 spike variants to characterize …


Dimeric Allostery Mechanism Of The Plant Circadian Clock Photoreceptor Zeitlupe, Francesco Trozzi, Feng Wang, Gennady M. Verkhivker, Brian D. Zoltowski, Peng Tao Jul 2021

Dimeric Allostery Mechanism Of The Plant Circadian Clock Photoreceptor Zeitlupe, Francesco Trozzi, Feng Wang, Gennady M. Verkhivker, Brian D. Zoltowski, Peng Tao

Mathematics, Physics, and Computer Science Faculty Articles and Research

In Arabidopsis thaliana, the Light-Oxygen-Voltage (LOV) domain containing protein ZEITLUPE (ZTL) integrates light quality, intensity, and duration into regulation of the circadian clock. Recent structural and biochemical studies of ZTL indicate that the protein diverges from other members of the LOV superfamily in its allosteric mechanism, and that the divergent allosteric mechanism hinges upon conservation of two signaling residues G46 and V48 that alter dynamic motions of a Gln residue implicated in signal transduction in all LOV proteins. Here, we delineate the allosteric mechanism of ZTL via an integrated computational approach that employs atomistic simulations of wild type and …


Allosteric Regulation At The Crossroads Of New Technologies: Multiscale Modeling, Networks, And Machine Learning, Gennady M. Verkhivker, Steve Agajanian, Guang Hu, Peng Tao Jul 2020

Allosteric Regulation At The Crossroads Of New Technologies: Multiscale Modeling, Networks, And Machine Learning, Gennady M. Verkhivker, Steve Agajanian, Guang Hu, Peng Tao

Mathematics, Physics, and Computer Science Faculty Articles and Research

Allosteric regulation is a common mechanism employed by complex biomolecular systems for regulation of activity and adaptability in the cellular environment, serving as an effective molecular tool for cellular communication. As an intrinsic but elusive property, allostery is a ubiquitous phenomenon where binding or disturbing of a distal site in a protein can functionally control its activity and is considered as the “second secret of life.” The fundamental biological importance and complexity of these processes require a multi-faceted platform of synergistically integrated approaches for prediction and characterization of allosteric functional states, atomistic reconstruction of allosteric regulatory mechanisms and discovery of …


Integration Of Random Forest Classifiers And Deep Convolutional Neural Networks For Classification And Biomolecular Modeling Of Cancer Driver Mutations, Steve Agajanian, Odeyemi Oluyemi, Gennady M. Verkhivker Jun 2019

Integration Of Random Forest Classifiers And Deep Convolutional Neural Networks For Classification And Biomolecular Modeling Of Cancer Driver Mutations, Steve Agajanian, Odeyemi Oluyemi, Gennady M. Verkhivker

Mathematics, Physics, and Computer Science Faculty Articles and Research

Development of machine learning solutions for prediction of functional and clinical significance of cancer driver genes and mutations are paramount in modern biomedical research and have gained a significant momentum in a recent decade. In this work, we integrate different machine learning approaches, including tree based methods, random forest and gradient boosted tree (GBT) classifiers along with deep convolutional neural networks (CNN) for prediction of cancer driver mutations in the genomic datasets. The feasibility of CNN in using raw nucleotide sequences for classification of cancer driver mutations was initially explored by employing label encoding, one hot encoding, and embedding to …


Curcumin Potentiates The Function Of Human Α7-Nicotinic Acetylcholine Receptors Expressed In Sh-Ep1 Cells, Eslam El Nebrisi, Lina T. Al Kury, Keun-Hang Susan Yang, Petrilla Jayaprakash, Frank Christopher Howarth, Nadine Kabbani, Murat Oz Jan 2018

Curcumin Potentiates The Function Of Human Α7-Nicotinic Acetylcholine Receptors Expressed In Sh-Ep1 Cells, Eslam El Nebrisi, Lina T. Al Kury, Keun-Hang Susan Yang, Petrilla Jayaprakash, Frank Christopher Howarth, Nadine Kabbani, Murat Oz

Mathematics, Physics, and Computer Science Faculty Articles and Research

Effects of curcumin, a biologically active ingredient of turmeric, were tested on the Ca2+transients induced by the activation of α7 subunit of the human nicotinic acetylcholine (α7nACh) receptor expressed in SH-EP1 cells. Curcumin caused a significant potentiation of choline (1 mM)-induced Ca2+ transients with an EC50 value of 133 nM. The potentiating effect of curcumin was not observed in Ca2+ transients induced by high K+ (60 mM) containing solutions or activation of α4β2 nACh receptors and the extent of curcumin potentiation was not altered in the presence of …


T-Time: A Data Repository Of T Cell And Calcium Release-Activated Calcium Channel Activation Imagery, Cody Arbuckle, Milton L. Greenberg, Adrienne Bergh, Rene German, Nick Sirago, Erik J. Linstead Aug 2017

T-Time: A Data Repository Of T Cell And Calcium Release-Activated Calcium Channel Activation Imagery, Cody Arbuckle, Milton L. Greenberg, Adrienne Bergh, Rene German, Nick Sirago, Erik J. Linstead

Mathematics, Physics, and Computer Science Faculty Articles and Research

BACKGROUND: A fundamental understanding of live-cell dynamics is necessary in order to advance scientific techniques and personalized medicine. For this understanding to be possible, image processing techniques, probes, tracking algorithms and many other methodologies must be improved. Currently there are no large open-source datasets containing live-cell imaging to act as a standard for the community. As a result, researchers cannot evaluate their methodologies on an independent benchmark or leverage such a dataset to formulate scientific questions.

FINDINGS: Here we present T-Time, the largest free and publicly available data set of T cell phase contrast imagery designed with the …


Thujone Inhibits The Function Of Α7-Nicotinic Acetylcholine Receptors And Impairs Nicotine-Induced Memory Enhancement In One-Trial Passive Avoidance Paradigm, Ahmed Sultan, Keun-Hang Susan Yang, Dmytro Isaev, Eslam El Nebrisi, Nurulain Syed, Nadia Khan, Christopher F. Howarth, Bassem Sadek, Murat Oz Apr 2017

Thujone Inhibits The Function Of Α7-Nicotinic Acetylcholine Receptors And Impairs Nicotine-Induced Memory Enhancement In One-Trial Passive Avoidance Paradigm, Ahmed Sultan, Keun-Hang Susan Yang, Dmytro Isaev, Eslam El Nebrisi, Nurulain Syed, Nadia Khan, Christopher F. Howarth, Bassem Sadek, Murat Oz

Mathematics, Physics, and Computer Science Faculty Articles and Research

Effects of thujone, a major ingredient of absinthe, wormwood oil and some herbal medicines, were tested on the function of α7 subunit of the human nicotinic acetylcholine (α7 nACh) receptor expressed in Xenopus oocytes using the two-electrode voltage-clamp technique. Thujone reversibly inhibited ACh (100 μM)-induced currents with an IC50 value of 24.7 μM. The effect of thujone was not dependent on the membrane potential and did not involve Ca2+-dependent Cl- channels expressed endogenously in oocytes. Inhibition by thujone was not reversed by increasing ACh concentrations. Moreover, specific binding of [125I] -bungarotoxin was not altered by thujone. Further experiments in SH-EP1 …


Dancing Through Life: Molecular Dynamics Simulations And Network-Centric Modeling Of Allosteric Mechanisms In Hsp70 And Hsp110 Chaperone Proteins, Gabrielle Stetz, Gennady M. Verkhivker Nov 2015

Dancing Through Life: Molecular Dynamics Simulations And Network-Centric Modeling Of Allosteric Mechanisms In Hsp70 And Hsp110 Chaperone Proteins, Gabrielle Stetz, Gennady M. Verkhivker

Mathematics, Physics, and Computer Science Faculty Articles and Research

Hsp70 and Hsp110 chaperones play an important role in regulating cellular processes that involve protein folding and stabilization, which are essential for the integrity of signaling networks. Although many aspects of allosteric regulatory mechanisms in Hsp70 and Hsp110 chaperones have been extensively studied and significantly advanced in recent experimental studies, the atomistic picture of signal propagation and energetics of dynamics-based communication still remain unresolved. In this work, we have combined molecular dynamics simulations and protein stability analysis of the chaperone structures with the network modeling of residue interaction networks to characterize molecular determinants of allosteric mechanisms. We have shown that …


Effects Of Cannabidiol On Contractions And Calcium Signaling In Rat Ventricular Myocytes, Ramez M. Ali, Lina T. Al Kury, Keun-Hang Susan Yang, Anwar Qureshi, Mohanraj Rajesh, Sehamuddin Galadari, Yaroslav M. Shuba, Frank Christopher Howarth, Murat Oz Apr 2015

Effects Of Cannabidiol On Contractions And Calcium Signaling In Rat Ventricular Myocytes, Ramez M. Ali, Lina T. Al Kury, Keun-Hang Susan Yang, Anwar Qureshi, Mohanraj Rajesh, Sehamuddin Galadari, Yaroslav M. Shuba, Frank Christopher Howarth, Murat Oz

Mathematics, Physics, and Computer Science Faculty Articles and Research

Cannabidiol (CBD), a major nonpsychotropic cannabinoid found in Cannabis plant, has been shown to influence cardiovascular functions under various physiological and pathological conditions. In the present study, the effects of CBD on contractility and electrophysiological properties of rat ventricular myocytes were investigated. Video edge detection was used to measure myocyte shortening. Intracellular Ca2+ was measured in cells loaded with the Ca2+ sensitive fluorescent indicator fura-2 AM. Whole-cell patch clamp was used to measure action potential and Ca2+ currents. Radioligand binding was employed to study pharmacological characteristics of CBD binding. CBD (1 μM) caused a significant decrease in the amplitudes of …


Detection And Tracking Of T Cells In Time-Lapse Imaging, Cody Arbuckle, Milton L. Greenberg, Erik J. Linstead Jan 2015

Detection And Tracking Of T Cells In Time-Lapse Imaging, Cody Arbuckle, Milton L. Greenberg, Erik J. Linstead

Mathematics, Physics, and Computer Science Faculty Articles and Research

The effective classification and tracking of cells obtained from modern staining techniques has significant limitations due to the necessity of having to train and utilize a human expert in the field who must manually identify each cell in each slide. Often times these slides are filled with noise cells that are not of particular interest to the researcher. The use of computational methods has the ability to effectively and efficiently enhance image quality, as well as identify and track target cell types over large data sets. Here we present a computational approach to the in vitro tracking of T cells …


Structure-Based Network Analysis Of Activation Mechanisms In The Erbb Family Of Receptor Tyrosine Kinases: The Regulatory Spine Residues Are Global Mediators Of Structural Stability And Allosteric Interactions, Kevin A. James, Gennady M. Verkhivker Nov 2014

Structure-Based Network Analysis Of Activation Mechanisms In The Erbb Family Of Receptor Tyrosine Kinases: The Regulatory Spine Residues Are Global Mediators Of Structural Stability And Allosteric Interactions, Kevin A. James, Gennady M. Verkhivker

Mathematics, Physics, and Computer Science Faculty Articles and Research

The ErbB protein tyrosine kinases are among the most important cell signaling families and mutation-induced modulation of their activity is associated with diverse functions in biological networks and human disease. We have combined molecular dynamics simulations of the ErbB kinases with the protein structure network modeling to characterize the reorganization of the residue interaction networks during conformational equilibrium changes in the normal and oncogenic forms. Structural stability and network analyses have identified local communities integrated around high centrality sites that correspond to the regulatory spine residues. This analysis has provided a quantitative insight to the mechanism of mutation-induced ‘‘superacceptor’’ activity …


Computational Modeling Of Allosteric Regulation In The Hsp90 Chaperones: A Statistical Ensemble Analysis Of Protein Structure Networks And Allosteric Communications, Kristin Blacklock, Gennady M. Verkhivker Jan 2014

Computational Modeling Of Allosteric Regulation In The Hsp90 Chaperones: A Statistical Ensemble Analysis Of Protein Structure Networks And Allosteric Communications, Kristin Blacklock, Gennady M. Verkhivker

Mathematics, Physics, and Computer Science Faculty Articles and Research

A fundamental role of the Hsp90 chaperone in regulating functional activity of diverse protein clients is essential for the integrity of signaling networks. In this work we have combined biophysical simulations of the Hsp90 crystal structures with the protein structure network analysis to characterize the statistical ensemble of allosteric interaction networks and communication pathways in the Hsp90 chaperones. We have found that principal structurally stable communities could be preserved during dynamic changes in the conformational ensemble. The dominant contribution of the inter-domain rigidity to the interaction networks has emerged as a common factor responsible for the thermodynamic stability of the …


Allosteric Regulation Of The Hsp90 Dynamics And Stability By Client Recruiter Cochaperones: Protein Structure Network Modeling, Kristin Blacklock, Gennady M. Verkhivker Jan 2014

Allosteric Regulation Of The Hsp90 Dynamics And Stability By Client Recruiter Cochaperones: Protein Structure Network Modeling, Kristin Blacklock, Gennady M. Verkhivker

Mathematics, Physics, and Computer Science Faculty Articles and Research

The fundamental role of the Hsp90 chaperone in supporting functional activity of diverse protein clients is anchored by specific cochaperones. A family of immune sensing client proteins is delivered to the Hsp90 system with the aid of cochaperones Sgt1 and Rar1 that act cooperatively with Hsp90 to form allosterically regulated dynamic complexes. In this work, functional dynamics and protein structure network modeling are combined to dissect molecular mechanisms of Hsp90 regulation by the client recruiter cochaperones. Dynamic signatures of the Hsp90-cochaperone complexes are manifested in differential modulation of the conformational mobility in the Hsp90 lid motif. Consistent with the experiments, …


Structure-Functional Prediction And Analysis Of Cancer Mutation Effects In Protein Kinases, Anshuman Dixit, Gennady M. Verkhivker Jan 2014

Structure-Functional Prediction And Analysis Of Cancer Mutation Effects In Protein Kinases, Anshuman Dixit, Gennady M. Verkhivker

Mathematics, Physics, and Computer Science Faculty Articles and Research

A central goal of cancer research is to discover and characterize the functional effects of mutated genes that contribute to tumorigenesis. In this study, we provide a detailed structural classification and analysis of functional dynamics for members of protein kinase families that are known to harbor cancer mutations. We also present a systematic computational analysis that combines sequence and structure-based prediction models to characterize the effect of cancer mutations in protein kinases. We focus on the differential effects of activating point mutations that increase protein kinase activity and kinase-inactivating mutations that decrease activity. Mapping of cancer mutations onto the conformational …


Cancer Quasispecies And Stem-Like Adaptive Aneuploidy, Domenico Napoletani, M. Signore, Daniele C. Struppa Jan 2013

Cancer Quasispecies And Stem-Like Adaptive Aneuploidy, Domenico Napoletani, M. Signore, Daniele C. Struppa

Mathematics, Physics, and Computer Science Faculty Articles and Research

In this paper we develop a theoretical frame to understand self-regulation of aneuploidy rate in cancer and stem cells. This is accomplished building upon quasispecies theory, by leaving its formal mathematical structure intact, but by drastically changing the meaning of its objects. In particular, we propose a novel definition of chromosomal master sequence, as a sequence of physically distinct whole or fragmented chromosomes, whose length is taken to be the sum of the copy numbers of each whole or fragmented chromosome. This fundamental change in the functional objects of quasispecies theory allows us to show that previously measured aneuploidy rates …


Menthol Binding And Inhibition Of A7-Nicotinic Acetylcholine Receptors, Abrar Ashoor, Jacob C. Nordman, Daniel Veltri, Keun-Hang Susan Yang, Lina T. Al Kury, Yaroslav M. Shuba, Mohamed Magoub, Frank Christopher Howarth, Bassem Sadek, Amarda Shehu, Nadine Kabbani, Murat Oz Jan 2013

Menthol Binding And Inhibition Of A7-Nicotinic Acetylcholine Receptors, Abrar Ashoor, Jacob C. Nordman, Daniel Veltri, Keun-Hang Susan Yang, Lina T. Al Kury, Yaroslav M. Shuba, Mohamed Magoub, Frank Christopher Howarth, Bassem Sadek, Amarda Shehu, Nadine Kabbani, Murat Oz

Mathematics, Physics, and Computer Science Faculty Articles and Research

Menthol is a common compound in pharmaceutical and commercial products and a popular additive to cigarettes. The molecular targets of menthol remain poorly defined. In this study we show an effect of menthol on the α7 subunit of the nicotinic acetylcholine (nACh) receptor function. Using a two-electrode voltage-clamp technique, menthol was found to reversibly inhibit α7-nACh receptors heterologously expressed in Xenopus oocytes. Inhibition by menthol was not dependent on the membrane potential and did not involve endogenous Ca2+-dependent Cl− channels, since menthol inhibition remained unchanged by intracellular injection of the Ca2+ chelator BAPTA and perfusion with Ca2+-free bathing solution containing …


Differential Modulation Of Functional Dynamics And Allosteric Interactions In The Hsp90-Cochaperone Complexes With P23 And Aha1: A Computational Study, Kristin Blacklock, Gennady M. Verkhivker Jan 2013

Differential Modulation Of Functional Dynamics And Allosteric Interactions In The Hsp90-Cochaperone Complexes With P23 And Aha1: A Computational Study, Kristin Blacklock, Gennady M. Verkhivker

Mathematics, Physics, and Computer Science Faculty Articles and Research

Allosteric interactions of the molecular chaperone Hsp90 with a large cohort of cochaperones and client proteins allow for molecular communication and event coupling in signal transduction networks. The integration of cochaperones into the Hsp90 system is driven by the regulatory mechanisms that modulate the progression of the ATPase cycle and control the recruitment of the Hsp90 clientele. In this work, we report the results of computational modeling of allosteric regulation in the Hsp90 complexes with the cochaperones p23 and Aha1. By integrating protein docking, biophysical simulations, modeling of allosteric communications, protein structure network analysis and the energy landscape theory we …


Higher Il-6 And Il6:Igf Ratio In Patients With Barth Syndrome, Lori D. Wilson, Sadeeka Al-Majid, Cyril Rakovski, Christina D. Schwindt Jan 2012

Higher Il-6 And Il6:Igf Ratio In Patients With Barth Syndrome, Lori D. Wilson, Sadeeka Al-Majid, Cyril Rakovski, Christina D. Schwindt

Mathematics, Physics, and Computer Science Faculty Articles and Research

Background: Barth Syndrome (BTHS) is a serious X-linked genetic disorder associated with mutations in the tafazzin gene (TAZ, also called G4.5). The multi-system disorder is primarily characterized by the following pathologies: cardiac and skeletal myopathies, neutropenia, growth delay, and exercise intolerance. Although growth anomalies have been widely reported in BTHS, there is a paucity of research on the role of inflammation and the potential link to alterations in growth factors levels in BTHS patients.

Methods: Plasma from 36 subjects, 22 patients with Barth Syndrome (0.5 - 24 yrs) and 14 healthy control males (8 - 21 yrs) was …


Probing Molecular Mechanisms Of The Hsp90 Chaperone: Biophysical Modeling Identifies Key Regulators Of Functional Dynamics, Anshuman Dixit, Gennady M. Verkhivker Jan 2012

Probing Molecular Mechanisms Of The Hsp90 Chaperone: Biophysical Modeling Identifies Key Regulators Of Functional Dynamics, Anshuman Dixit, Gennady M. Verkhivker

Mathematics, Physics, and Computer Science Faculty Articles and Research

Deciphering functional mechanisms of the Hsp90 chaperone machinery is an important objective in cancer biology aiming to facilitate discovery of targeted anti-cancer therapies. Despite significant advances in understanding structure and function of molecular chaperones, organizing molecular principles that control the relationship between conformational diversity and functional mechanisms of the Hsp90 activity lack a sufficient quantitative characterization. We combined molecular dynamics simulations, principal component analysis, the energy landscape model and structure-functional analysis of Hsp90 regulatory interactions to systematically investigate functional dynamics of the molecular chaperone. This approach has identified a network of conserved regions common to the Hsp90 chaperones that could …


Simulating Molecular Mechanisms Of The Mdm2-Mediated Regulatory Interactions: A Conformational Selection Model Of The Mdm2 Lid Dynamics, Gennady M. Verkhivker Jan 2012

Simulating Molecular Mechanisms Of The Mdm2-Mediated Regulatory Interactions: A Conformational Selection Model Of The Mdm2 Lid Dynamics, Gennady M. Verkhivker

Mathematics, Physics, and Computer Science Faculty Articles and Research

Diversity and complexity of MDM2 mechanisms govern its principal function as the cellular antagonist of the p53 tumor suppressor. Structural and biophysical studies have demonstrated that MDM2 binding could be regulated by the dynamics of a pseudo-substrate lid motif. However, these experiments and subsequent computational studies have produced conflicting mechanistic models of MDM2 function and dynamics. We propose a unifying conformational selection model that can reconcile experimental findings and reveal a fundamental role of the lid as a dynamic regulator of MDM2-mediated binding. In this work, structure, dynamics and energetics of apo-MDM2 are studied as a function of posttranslational modifications …


Modeling Measurement Error In Tumor Characterization Studies, Cyril Rakovski, Daniel J. Weisenberger, Paul Marjoram, Peter W. Laird, Kimberly D. Siegmund Jan 2011

Modeling Measurement Error In Tumor Characterization Studies, Cyril Rakovski, Daniel J. Weisenberger, Paul Marjoram, Peter W. Laird, Kimberly D. Siegmund

Mathematics, Physics, and Computer Science Faculty Articles and Research

Background: Etiologic studies of cancer increasingly use molecular features such as gene expression, DNA methylation and sequence mutation to subclassify the cancer type. In large population-based studies, the tumor tissues available for study are archival specimens that provide variable amounts of amplifiable DNA for molecular analysis. As molecular features measured from small amounts of tumor DNA are inherently noisy, we propose a novel approach to improve statistical efficiency when comparing groups of samples. We illustrate the phenomenon using the MethyLight technology, applying our proposed analysis to compare MLH1 DNA methylation levels in males and females studied in the Colon …


The Energy Landscape Analysis Of Cancer Mutations In Protein Kinases, Anshuman Dixit, Gennady M. Verkhivker Jan 2011

The Energy Landscape Analysis Of Cancer Mutations In Protein Kinases, Anshuman Dixit, Gennady M. Verkhivker

Mathematics, Physics, and Computer Science Faculty Articles and Research

The growing interest in quantifying the molecular basis of protein kinase activation and allosteric regulation by cancer mutations has fueled computational studies of allosteric signaling in protein kinases. In the present study, we combined computer simulations and the energy landscape analysis of protein kinases to characterize the interplay between oncogenic mutations and locally frustrated sites as important catalysts of allostetric kinase activation. While structurally rigid kinase core constitutes a minimally frustrated hub of the catalytic domain, locally frustrated residue clusters, whose interaction networks are not energetically optimized, are prone to dynamic modulation and could enable allosteric conformational transitions. The results …