Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Life Sciences

Computer Simulation And Mathematical Models Of The Noncentrosomal Plant Cortical Microtubule Cytoskeleton, Ezgi Can Eren, Natarajan Gautam, Ram Dixit Mar 2012

Computer Simulation And Mathematical Models Of The Noncentrosomal Plant Cortical Microtubule Cytoskeleton, Ezgi Can Eren, Natarajan Gautam, Ram Dixit

Biology Faculty Publications & Presentations

There is rising interest in modeling the noncentrosomal cortical microtubule cytoskeleton of plant cells, particularly its organization into ordered arrays and the mechanisms that facilitate this organization. In this review, we discuss quantitative models of this highly complex and dynamic structure both at a cellular and molecular level. We report differences in methodologies and assumptions of different models as well as their controversial results. Our review provides insights for future studies to resolve these controversies, in addition to underlining the common results between various models. We also highlight the need to compare the results from simulation and mathematical models with …


Putting A Bifunctional Motor To Work: Insights Into The Role Of Plant Kch Kinesins, Ram Dixit Feb 2012

Putting A Bifunctional Motor To Work: Insights Into The Role Of Plant Kch Kinesins, Ram Dixit

Biology Faculty Publications & Presentations

Comment on: A novel actin-microtubule cross-linking kinesin, NtKCH, functions in cell expansion and division. [New Phytol. 2012 Feb;193(3):576-89. doi: 10.1111/j.1469-8137.2011.03944.x. ]


Single-Molecule Analysis Of The Microtubule Cross-Linking Protein Map65-1 Reveals A Molecular Mechanism For Contact-Angle-Dependent Microtubule Bundling, Amanda Tulin, Sheri Mcclerklin, Yue Huang, Ram Dixit Feb 2012

Single-Molecule Analysis Of The Microtubule Cross-Linking Protein Map65-1 Reveals A Molecular Mechanism For Contact-Angle-Dependent Microtubule Bundling, Amanda Tulin, Sheri Mcclerklin, Yue Huang, Ram Dixit

Biology Faculty Publications & Presentations

Bundling of microtubules (MTs) is critical for the formation of complex MT arrays. In land plants, the interphase cortical MTs form bundles specifically following shallow-angle encounters between them. To investigate how cells select particular MT contact angles for bundling, we used an in vitro reconstitution approach consisting of dynamic MTs and the MT-cross-linking protein MAP65-1. We found that MAP65-1 binds to MTs as monomers and inherently targets antiparallel MTs for bundling. Dwell-time analysis showed that the affinity of MAP65-1 for antiparallel overlapping MTs is about three times higher than its affinity for single MTs and parallel overlapping MTs. We also …