Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Cell and Developmental Biology

External Link

2014

Leydig Cells

Articles 1 - 6 of 6

Full-Text Articles in Life Sciences

Pubertal And Adult Leydig Cell Function In Mullerian Inhibiting Substance-Deficient Mice, Xiufeng Wu, Ramamani Arumugam, Stephen Baker, Mary Lee Sep 2014

Pubertal And Adult Leydig Cell Function In Mullerian Inhibiting Substance-Deficient Mice, Xiufeng Wu, Ramamani Arumugam, Stephen Baker, Mary Lee

Mary M. Lee

Mullerian inhibiting substance (MIS) causes Mullerian duct regression during sexual differentiation and regulates postnatal Leydig cell development. MIS knockout (MIS-KO) mice with targeted deletions of MIS develop Leydig cell hyperplasia, but their circulating androgen concentrations are reportedly unaltered. We compared reproductive hormone profiles, androgen biosynthesis, and the expression of key steroidogenic and metabolic enzymes in MIS-KO and wild-type (WT) mice at puberty (36 d) and sexual maturity (60 d). In pubertal animals, basal testosterone and LH concentrations in plasma were lower in MIS-KO than WT mice, whereas human chorionic gonadotropin-stimulated testosterone concentrations were similar. In adults, basal LH, and both …


Key Factors In The Regulation Of Fetal And Postnatal Leydig Cell Development, Xiufeng Wu, Shengqin Wan, Mary Lee Sep 2014

Key Factors In The Regulation Of Fetal And Postnatal Leydig Cell Development, Xiufeng Wu, Shengqin Wan, Mary Lee

Mary M. Lee

The primary function of testicular Leydig cells is the production of androgens to promote sexual differentiation in the fetus, secondary sexual maturation at puberty, and spermatogenesis in the adult. The fetal and postnatal (adult) populations of Leydig cells differ morphologically and have distinct profiles of gene expression. As postnatal Leydig cells differentiate, they transition through three discrete maturational stages characterized by decreasing proliferative rate and increasing testosterone biosynthetic capacity. In this review, we discuss the development of both fetal and postnatal Leydig cells and review the regulation of this process by some of the key hormones and growth factors.


Mullerian-Inhibiting Substance Inhibits Rat Leydig Cell Regeneration After Ethylene Dimethanesulphonate Ablation, Antonio Salva, Matthew Hardy, Xiufeng Wu, Chantal Sottas, David Maclaughlin, Patricia Donahoe, Mary Lee Sep 2014

Mullerian-Inhibiting Substance Inhibits Rat Leydig Cell Regeneration After Ethylene Dimethanesulphonate Ablation, Antonio Salva, Matthew Hardy, Xiufeng Wu, Chantal Sottas, David Maclaughlin, Patricia Donahoe, Mary Lee

Mary M. Lee

The postnatal development of Leydig cell precursors is postulated to be controlled by Sertoli cell secreted factors, which may have a determinative influence on Leydig cell number and function in sexually mature animals. One such hormone, Mullerian inhibiting substance (MIS), has been shown to inhibit DNA synthesis and steroidogenesis in primary Leydig cells and Leydig cell tumor lines. To further delineate the effects of MIS on Leydig cell proliferation and steroidogenesis, we employed the established ethylene dimethanesulphonate (EDS) model of Leydig cell regeneration. Following EDS ablation of differentiated Leydig cells in young adult rats, recombinant MIS or vehicle was delivered …


Mullerian Inhibiting Substance Recruits Alk3 To Regulate Leydig Cell Differentiation, Xiufeng Wu, Ningning Zhang, Mary Lee Sep 2014

Mullerian Inhibiting Substance Recruits Alk3 To Regulate Leydig Cell Differentiation, Xiufeng Wu, Ningning Zhang, Mary Lee

Mary M. Lee

Mullerian inhibiting substance (MIS) not only induces Mullerian duct regression during male sexual differentiation but also modulates Leydig cell steroidogenic capacity and differentiation. MIS actions are mediated through a complex of homologous receptors: a type II ligand-binding receptor [MIS type II receptor (MISRII)] and a tissue-specific type I receptor that initiates downstream signaling. The putative MIS type I receptors responsible for Mullerian duct regression are activin A type II receptor, type I [Acvr1/activin receptor-like kinase 2 (ALK2)], ALK3, and ALK6, but the one recruited by MIS in Leydig cells is unknown. To identify whether ALK3 is the specific type I …


Androgen Profiles During Pubertal Leydig Cell Development In Mice, Xiufeng Wu, Ramamani Arumugam, Ningning Zhang, Mary Lee Sep 2014

Androgen Profiles During Pubertal Leydig Cell Development In Mice, Xiufeng Wu, Ramamani Arumugam, Ningning Zhang, Mary Lee

Mary M. Lee

Postnatal Leydig cell (LC) development in mice has been assumed empirically to resemble that of rats, which have characteristic hormonal profiles at well-defined maturational stages. To characterize the changes in LC function and gene expression in mice, we examined reproductive hormone expression from birth to 180 days, and quantified in vivo and in vitro production of androgens during sexual maturation. Although the overall plasma androgen and LH profiles from birth through puberty were comparable to that of rats, the timing of developmental changes in androgen production and steroidogenic capacity of isolated LCs differed. In mice, onset of androgen biosynthetic capacity, …


Mullerian-Inhibiting Substance Type Ii Receptor Expression And Function In Purified Rat Leydig Cells, Mary Lee, C. Seah, P. Masiakos, Chantal Sottas, F. Preffer, Patricia Donahoe, David Maclaughlin, Matthew Hardy Sep 2014

Mullerian-Inhibiting Substance Type Ii Receptor Expression And Function In Purified Rat Leydig Cells, Mary Lee, C. Seah, P. Masiakos, Chantal Sottas, F. Preffer, Patricia Donahoe, David Maclaughlin, Matthew Hardy

Mary M. Lee

Mullerian-inhibiting substance (MIS), a gonadal hormone in the transforming growth factor-beta superfamily, induces Mullerian duct involution during male sexual differentiation. Mice with null mutations of the MIS ligand or receptor develop Leydig cell hyperplasia and neoplasia in addition to retained Mullerian ducts, whereas MIS-overexpressing transgenic mice have decreased testosterone concentrations and Leydig cell numbers. We hypothesized that MIS directly modulates Leydig cell proliferation and differentiated function in the maturing testis. Therefore, highly purified rat Leydig and Sertoli cells were isolated to examine cell-specific expression, binding, and function of the MIS type II receptor. These studies revealed that this receptor is …