Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Life Sciences

Human Ipsc Tissue-Engineered Cartilage For Disease Modeling Of Skeletal Dysplasia-Causing Trpv4 Mutations, Amanda R. Dicks Aug 2021

Human Ipsc Tissue-Engineered Cartilage For Disease Modeling Of Skeletal Dysplasia-Causing Trpv4 Mutations, Amanda R. Dicks

McKelvey School of Engineering Theses & Dissertations

Cartilage is essential to joint development and function. However, there is a variety of cartilage diseases, ranging from developmental (e.g., skeletal dysplasias) to degenerative (e.g., arthritis), in which treatments and therapeutics are lacking. For example, specific point mutations in the ion channel transient receptor potential vanilloid 4 (TRPV4) prevent proper joint development, leading to mild brachyolmia and severe, neonatally lethal metatropic dysplasia. Tissue-engineered cartilage offers an opportunity to elucidate the underlying mechanisms of these cartilage diseases for the development of treatments. Human induced pluripotent stem cells (hiPSCs) are an improved cell source option for cartilage tissue engineering given their minimal …


Donor Age Effects On The Proliferative And Chondrogenic/Osteogenic Differentiation Performance Of Equine Bone Marrow- And Adipose Tissue Derived Mesenchymal Stem Cells In Culture, Jasmin Bagge Jan 2020

Donor Age Effects On The Proliferative And Chondrogenic/Osteogenic Differentiation Performance Of Equine Bone Marrow- And Adipose Tissue Derived Mesenchymal Stem Cells In Culture, Jasmin Bagge

Theses and Dissertations--Veterinary Science

Orthopedic injuries are a major cause of lameness and morbidity in horses. Bone marrow (BM)- and adipose tissue (AT) derived mesenchymal stem cells (MSCs) have shown potential to facilitate the repair of orthopedic injuries and are being used increasingly in veterinary clinics. Presently, the use of MSCs as a therapy for equine patients is most commonly applied as autologous transplants, using BM- and AT-MSCs harvested from the patient shortly after the time of injury. Cell-based therapies are therefore delayed to enable primary cell numbers to be expanded in culture. Of concern, however, are human and rodent studies that have shown …


Differential Gene Expression In Response To Hypoxia And Acidosis In Chest Wall Deformities And Chondrosarcoma, Jamie L. Durbin Apr 2018

Differential Gene Expression In Response To Hypoxia And Acidosis In Chest Wall Deformities And Chondrosarcoma, Jamie L. Durbin

Biological Sciences Theses & Dissertations

The importance of understanding how costal cartilage chondrocytes respond to stimuli such as oxidative stress and low pH has been largely overlooked in studies involving tissue culturing due to major differences between oxygen and pH levels during incubation and the natural environment of hyaline cartilage. Hyaline cartilage is avascular and naturally hypoxic which subsequently leads to increased glycolytic metabolism and ultimately causes a decrease in extracellular pH. To examine how healthy costal cartilage responds to these extreme growth conditions, we examined responses in three hyaline cartilage diseases. Our ability to identify the disease mechanisms responsible for pectus excavatum, pectus carinatum, …


The Nuclear Factor Of Activated T Cells (Nfat) Transcription Factor Nfatp (Nfatc2) Is A Repressor Of Chondrogenesis, Ann M. Ranger, Louis C. Gerstenfeld, Jinxi Wang, Tamiyo Kon, Hyunsu Bae, Ellen M. Gravallese, Melvin J. Glimcher, Laurie H. Glimcher Apr 2015

The Nuclear Factor Of Activated T Cells (Nfat) Transcription Factor Nfatp (Nfatc2) Is A Repressor Of Chondrogenesis, Ann M. Ranger, Louis C. Gerstenfeld, Jinxi Wang, Tamiyo Kon, Hyunsu Bae, Ellen M. Gravallese, Melvin J. Glimcher, Laurie H. Glimcher

Ellen M. Gravallese

Nuclear factor of activated T cells (NFAT) transcription factors regulate gene expression in lymphocytes and control cardiac valve formation. Here, we report that NFATp regulates chondrogenesis in the adult animal. In mice lacking NFATp, resident cells in the extraarticular connective tissues spontaneously differentiate to cartilage. These cartilage cells progressively differentiate and the tissue undergoes endochondral ossification, recapitulating the development of endochondral bone. Proliferation of already existing articular cartilage cells also occurs in some older animals. At both sites, neoplastic changes in the cartilage cells occur. Consistent with these data, NFATp expression is regulated in mesenchymal stem cells induced to differentiate …


Dielectric Characterization Of Coastal Cartilage Chondrocytes, Michael W. Stacey, Ahmet C. Sabuncu, Ali Beskok Jan 2014

Dielectric Characterization Of Coastal Cartilage Chondrocytes, Michael W. Stacey, Ahmet C. Sabuncu, Ali Beskok

Bioelectrics Publications

BACKGROUND: Chondrocytes respond to biomechanical and bioelectrochemical stimuli by secreting appropriate extracellular matrix proteins that enable the tissue to withstand the large forces it experiences. Although biomechanical aspects of cartilage are well described, little is known of the bioelectrochemical responses. The focus of this study is to identify bioelectrical characteristics of human costal cartilage cells using dielectric spectroscopy.

METHODS: Dielectric spectroscopy allows non-invasive probing of biological cells. An in house computer program is developed to extract dielectric properties of human costal cartilage cells from raw cell suspension impedance data measured by a microfluidic device. The dielectric properties of chondrocytes are …


Germline Transgenic Methods For Tracking Cells And Testing Gene Function During Regeneration In The Axolotl, Shahryar Khattak, Maritta Schuez, Tobias Richter, Dunja Knapp, Saori L. Haigo, Tatiana Sandoval-Guzmán, Kristyna Hradlikova, Annett Duemmler, Ryan R. Kerney, Elly M. Tanaka Jun 2013

Germline Transgenic Methods For Tracking Cells And Testing Gene Function During Regeneration In The Axolotl, Shahryar Khattak, Maritta Schuez, Tobias Richter, Dunja Knapp, Saori L. Haigo, Tatiana Sandoval-Guzmán, Kristyna Hradlikova, Annett Duemmler, Ryan R. Kerney, Elly M. Tanaka

Biology Faculty Publications

The salamander is the only tetrapod that regenerates complex body structures throughout life. Deciphering the underlying molecular processes of regeneration is fundamental for regenerative medicine and developmental biology, but the model organism had limited tools for molecular analysis. We describe a comprehensive set of germline transgenic strains in the laboratory-bred salamander Ambystoma mexicanum(axolotl) that open up the cellular and molecular genetic dissection of regeneration. We demonstrate tissue-dependent control of gene expression in nerve, Schwann cells, oligodendrocytes, muscle, epidermis, and cartilage. Furthermore, we demonstrate the use of tamoxifen-induced Cre/loxP-mediated recombination to indelibly mark different cell types. Finally, we inducibly …