Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Life Sciences

Host Pathogen Interactions: Is Arabidopsis Thaliana Remembered By Its Nemesis Pseudomonas Syringae?, Daniel Z. Kreiser May 2012

Host Pathogen Interactions: Is Arabidopsis Thaliana Remembered By Its Nemesis Pseudomonas Syringae?, Daniel Z. Kreiser

Lawrence University Honors Projects

Plants contain innate immune systems that deter pathogen infection. Pattern recognition receptors bind microbe-associated molecular patterns (MAMPs), triggering immunity. MAMPs are proteins exclusive to pathogens that are typically indispensable for their survival. For this reason, MAMPs cannot be mutated or removed without causing pathogen death. However, this does not necessitate constitutive expression of MAMPs. In this study, the MAMP response of Arabidopsis thaliana was utilized to determine differential detection of MAMPs expressed by Pseudomonas syringe pv. tomato DC3000 when pretreated with A. thaliana. Results demonstrated that more MAMPs are detected when P. syringae had previously encountered A. thaliana, …


Elucidating The Effect Of Silver On Ethylene Signaling In Arabidopsis Thaliana, Brittany Kathleen Mcdaniel May 2012

Elucidating The Effect Of Silver On Ethylene Signaling In Arabidopsis Thaliana, Brittany Kathleen Mcdaniel

Masters Theses

Ethylene, a gaseous plant hormone, is involved in numerous plant developmental processes such as seed germination, senescence, and fruit ripening. In Arabidopsis thaliana, ethylene is perceived by a family of five membrane-bound receptors, which upon binding ethylene trigger downstream effects. At the receptor level, it is known that the coordination of a copper ion is necessary for ethylene to bind, resulting in a conformational change of the receptor and the initiation of the ethylene signal transduction pathway. Interestingly, silver ions are also able to support binding of ethylene but ethylene responses are blocked in the presence of silver. When …


Computer Simulation And Mathematical Models Of The Noncentrosomal Plant Cortical Microtubule Cytoskeleton, Ezgi Can Eren, Natarajan Gautam, Ram Dixit Mar 2012

Computer Simulation And Mathematical Models Of The Noncentrosomal Plant Cortical Microtubule Cytoskeleton, Ezgi Can Eren, Natarajan Gautam, Ram Dixit

Biology Faculty Publications & Presentations

There is rising interest in modeling the noncentrosomal cortical microtubule cytoskeleton of plant cells, particularly its organization into ordered arrays and the mechanisms that facilitate this organization. In this review, we discuss quantitative models of this highly complex and dynamic structure both at a cellular and molecular level. We report differences in methodologies and assumptions of different models as well as their controversial results. Our review provides insights for future studies to resolve these controversies, in addition to underlining the common results between various models. We also highlight the need to compare the results from simulation and mathematical models with …


Single-Molecule Analysis Of The Microtubule Cross-Linking Protein Map65-1 Reveals A Molecular Mechanism For Contact-Angle-Dependent Microtubule Bundling, Amanda Tulin, Sheri Mcclerklin, Yue Huang, Ram Dixit Feb 2012

Single-Molecule Analysis Of The Microtubule Cross-Linking Protein Map65-1 Reveals A Molecular Mechanism For Contact-Angle-Dependent Microtubule Bundling, Amanda Tulin, Sheri Mcclerklin, Yue Huang, Ram Dixit

Biology Faculty Publications & Presentations

Bundling of microtubules (MTs) is critical for the formation of complex MT arrays. In land plants, the interphase cortical MTs form bundles specifically following shallow-angle encounters between them. To investigate how cells select particular MT contact angles for bundling, we used an in vitro reconstitution approach consisting of dynamic MTs and the MT-cross-linking protein MAP65-1. We found that MAP65-1 binds to MTs as monomers and inherently targets antiparallel MTs for bundling. Dwell-time analysis showed that the affinity of MAP65-1 for antiparallel overlapping MTs is about three times higher than its affinity for single MTs and parallel overlapping MTs. We also …