Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Cell Biology

Computer Science Faculty Publications

Series

Mice

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Granulosa Cell Proliferation Is Inhibited By Pge2 In The Primate Ovulatory Follicle, Patric S. Lundberg, Gil J. Moskowitz, Carmel Bellacose, Esra Demirel, Heidi A. Trau, Diane M. Duffy Jan 2020

Granulosa Cell Proliferation Is Inhibited By Pge2 In The Primate Ovulatory Follicle, Patric S. Lundberg, Gil J. Moskowitz, Carmel Bellacose, Esra Demirel, Heidi A. Trau, Diane M. Duffy

Computer Science Faculty Publications

Prostaglandin E2 (PGE2) is a key paracrine mediator of ovulation. Few specific PGE2-regulated gene products have been identified, so we hypothesized that PGE2 may regulate the expression and/or activity of a network of proteins to promote ovulation. To test this concept, Ingenuity Pathway Analysis (IPA) was used to predict PGE2-regulated functionalities in the primate ovulatory follicle. Cynomolgus macaques underwent ovarian stimulation. Follicular granulosa cells were obtained before (0 h) or 36 h after an ovulatory dose of human chorionic gonadotropin (hCG), with ovulation anticipated 37-40 h after hCG. Granulosa cells were obtained from additional monkeys 36 h after treatment with …


Dormant Pathogenic Cd4(+) T Cells Are Prevalent In The Peripheral Repertoire Of Healthy Mice, Anna Cebula, Michal Kuczma, Edyta Szurek, Maciej Pietrzak, Natasha Savage, Wessam R. Elhefnawy, Grzegorz Rempala, Piotr Kraj, Leszek Ignatowicz Oct 2019

Dormant Pathogenic Cd4(+) T Cells Are Prevalent In The Peripheral Repertoire Of Healthy Mice, Anna Cebula, Michal Kuczma, Edyta Szurek, Maciej Pietrzak, Natasha Savage, Wessam R. Elhefnawy, Grzegorz Rempala, Piotr Kraj, Leszek Ignatowicz

Computer Science Faculty Publications

Thymic central tolerance eliminates most immature T cells with autoreactive T cell receptors (TCR) that recognize self MHC/peptide complexes. Regardless, an unknown number of autoreactive CD4+Foxp3 T cells escape negative selection and in the periphery require continuous suppression by CD4+Foxp3+ regulatory cells (Tregs). Here, we compare immune repertoires of Treg-deficient and Treg-sufficient mice to find Tregs continuously constraining one-third of mature CD4+Foxp3 cells from converting to pathogenic effectors in healthy mice. These dormant pathogenic clones frequently express TCRs activatable by ubiquitous autoantigens presented by class II MHCs on conventional dendritic cells, including selfpeptides that select …