Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Life Sciences

Molecular Characterization Of Galectin From Amblyomma Americanum In Context Of Α-Gal Syndrome, Sumar Beauti May 2021

Molecular Characterization Of Galectin From Amblyomma Americanum In Context Of Α-Gal Syndrome, Sumar Beauti

Honors Theses

The lone star tick Amblyomma americanum is a vector of various disease-causing pathogens and tick-borne alpha-gal syndrome (AGS) with rapidly expanding populations in the south- and northeast regions of the United States. This study aimed to molecularly characterize galectin and determine its involvement in galactose-α-1,3-galactose (α-gal) synthesis, transport, reproductive fitness, and microbial homeostasis in this tick. The lone star tick galectin possesses two conserved carbohydrate recognition domains and shares homology with other Ixodid tick galectins. Time and tissue-dependent expression data shows that galectin is constantly expressed in salivary glands, midgut, and ovary tissues. An RNA interference approach was used to …


The Subcloning And Expression Of Munc18a In Escherichia Coli For Antibody Production And Analysis In Mast Cell Degranulation Reactions, Brandi Goble May 2018

The Subcloning And Expression Of Munc18a In Escherichia Coli For Antibody Production And Analysis In Mast Cell Degranulation Reactions, Brandi Goble

Honors Theses

Mast cells are secretory cells responsible for fighting off infection through the early recognition of pathogens. This process is completed through the secretion of proinflammatory mediators that are stored in secretory granules within the cytoplasm of the cell. The degranulation secretion process relies on regulated fusion of secretory granules to the cell membrane via membrane-bound SNARE proteins that bridges the two opposed membranes. The intricate regulation of SNARE-mediated mast cell degranulation is not well understood. However, Sec1/Munc18 (SM) proteins, specifically the Munc18 isoforms, are known to play a critical role in the process (Brochetta, et. al., 2014). The Xu lab …


Characterization Of Embryonic Stem Cell-Differentiated Cells As Mesenchymal Stem Cells, Rachael N. Kuehn Dec 2015

Characterization Of Embryonic Stem Cell-Differentiated Cells As Mesenchymal Stem Cells, Rachael N. Kuehn

Honors Theses

Embryonic stem cells (ESCs), due to their ability to differentiate into different cell types while still maintaining a high proliferation capacity, have been considered as a potential cell source in regenerative medicine. However, current ESC differentiation methods are low yielding and create heterogeneous cell populations. If transplanted in the human body, differentiated ESCs could be rejected by the immune system, form tumors, or may not function normally within the human body. On the other hand, mesenchymal stem cells (MSCs), a type of adult stem cell typically derived from bone marrow, have proved to be excellent candidates in clinical applications due …


Activation Of Nf-Κb Transcription Factor During In Vitro Differentiation Of Mouse Embryonic Stem Cells, Natalya A. Ortolano May 2015

Activation Of Nf-Κb Transcription Factor During In Vitro Differentiation Of Mouse Embryonic Stem Cells, Natalya A. Ortolano

Honors Theses

Embryonic stem cells (ESCs) are a promising cell source for regenerative medicine. However, recent studies indicated that ESCs and ESC-derived cells (ESC-DCs) lack functional innate immunity against various pathogens and inflammatory cytokines. This presents a barrier to clinical application, as ESC-DCs would be placed in a wound site and exposed to pathogens and inflammatory cytokines. Using mouse ESCs (mESCs) as a model, we recently demonstrated that they are deficient in expressing type I interferons (IFN) and inflammatory cytokines. To determine the molecular basis for this finding, this study examined the activation state of nuclear factor-κB (NF-κB), a transcription factor that …