Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Life Sciences

Mammary Extracellular Matrix Directs Differentiation Of Testicular And Embryonic Stem Cells To Form Functional Mammary Glands In Vivo, Robert D. Bruno, Jodie M. Fleming, Andrea L. George, Corinne A. Boulanger, Pepper Schedin, Gilbert H. Smith Jan 2017

Mammary Extracellular Matrix Directs Differentiation Of Testicular And Embryonic Stem Cells To Form Functional Mammary Glands In Vivo, Robert D. Bruno, Jodie M. Fleming, Andrea L. George, Corinne A. Boulanger, Pepper Schedin, Gilbert H. Smith

School of Medical Diagnostics & Translational Sciences Faculty Publications

Previously, we demonstrated the ability of the normal mammary microenvironment (niche) to direct non-mammary cells including testicular and embryonic stem cells (ESCs) to adopt a mammary epithelial cell (MEC) fate. These studies relied upon the interaction of transplanted normal MECs with non-mammary cells within the mammary fat-pads of recipient mice that had their endogenous epithelium removed. Here, we tested whether acellular mammary extracellular matrix (mECM) preparations are sufficient to direct differentiation of testicular-derived cells and ESCs to form functional mammary epithelial trees in vivo. We found that mECMs isolated from adult mice and rats were sufficient to redirect testicular derived …


A Potential Mechanism For Extracellular Matrix Induction Of Breast Cancer Cell Normality, Robert D. Bruno, Gilbert H. Smith Jan 2014

A Potential Mechanism For Extracellular Matrix Induction Of Breast Cancer Cell Normality, Robert D. Bruno, Gilbert H. Smith

School of Medical Diagnostics & Translational Sciences Faculty Publications

Extracellular matrix proteins from embryonic mesenchyme have a normalizing effect on cancer cells in vitro and slow tumor growth in vivo. This concept is suggestive of a new method for controlling the growth and spread of existing cancer cells in situ and indicates the possibility that extracellular proteins and/or embryonic mesenchymal fibroblasts may represent a fertile subject for study of new anti-cancer treatments.


Regulation Of Sparc Gene Expression By The Activator Protein 1 Transcription Factor, Joseph William Briggs Jan 2005

Regulation Of Sparc Gene Expression By The Activator Protein 1 Transcription Factor, Joseph William Briggs

Theses and Dissertations in Biomedical Sciences

Overexpression of the c-Jun proto-oncogene in MCF7 breast cancer cells results in a variety of phenotypic changes related to malignant progression including a shift to estrogen independent growth, increased cell motility and invasion. Concurrent with these phenotypic changes are alterations to cellular gene expression patterns. One gene that becomes highly upregulated is SPARC (secreted protein acidic and rich in cysteine). Increased SPARC expression is associated with malignant progression in a variety of different cancers, although little is known regarding the mechanisms of SPARC gene regulation. Therefore, the objectives of this study were: (1) to determine the mechanisms by which c-Jun …