Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 42

Full-Text Articles in Life Sciences

Connections Between Mechanosensitive Ion Channel Msl10 And Er-Plasma Membrane Contact Sites, Jennette Marie Codjoe Dec 2022

Connections Between Mechanosensitive Ion Channel Msl10 And Er-Plasma Membrane Contact Sites, Jennette Marie Codjoe

Arts & Sciences Electronic Theses and Dissertations

Mechanosensitive (MS) ion channels are an evolutionarily conserved way for cells to sense mechanical forces and transduce them into ionic signals. A plasma membrane-localized MS channel from Arabidopsis thaliana, MscS-Like (MSL)10, senses cell swelling and initiates a signaling cascade that triggers programmed cell death. Whereas the channel properties of MSL10 have been well studied, how MSL10 signals remains largely unknown. I worked collaboratively to show that important lesions for cell death signaling in the cytosolic N- and C-terminal domains of MSL10 interact genetically. I also helped show that ionic flux through MSL10 is dispensable for signaling, which suggested that MSL10 …


A Universal Mechanism Of G Protein Inhibition, Tyson Daniel Todd Dec 2022

A Universal Mechanism Of G Protein Inhibition, Tyson Daniel Todd

Arts & Sciences Electronic Theses and Dissertations

G protein coupled receptors transduce a truly staggering number of diverse extracellular signals including chemical messengers, physical force, and even photons into specific cellular responses through their coupling to heterotrimeric G proteins. G proteins amplify the originating signal through their binding to downstream effectors, activating a complex network of overlapping responses that allow the cell to respond perfectly to that specific stimulus. It is critical to the cell that this process is carried out faithfully in order to respond to the myriad environmental cues and avoid injury, exhaustion, and death for the individual cell or the development of pathology if …


Exploring The Intrinsic And Extrinsic Factors That Regulate Breast Cancer Cell Dormancy, Qihao Ren Aug 2021

Exploring The Intrinsic And Extrinsic Factors That Regulate Breast Cancer Cell Dormancy, Qihao Ren

Arts & Sciences Electronic Theses and Dissertations

Breast cancer can recur in patients months to decades after initial diagnosis and treatment. There is mounting evidence that dormant breast disseminated tumor cells (DTCs) exist in distant organs, whose reactivation results in cancer recurrence. However, the mechanisms that control tumor cell dormancy remain poorly understood, making it difficult to predict which patients will recur and develop cancer recurrence. Unfortunately, the extreme rarity of dormant DTCs has been the major obstacle to their study. To overcome this challenge, we developed an efficient system to isolate and study rare dormant tumor cells from metastatic organs. Using this system and single cell …


Discovery Of Sex Differences In Response To P53 Loss And Gain-Of-Function In Glioblastoma, Nathan Cuyle Rockwell Aug 2021

Discovery Of Sex Differences In Response To P53 Loss And Gain-Of-Function In Glioblastoma, Nathan Cuyle Rockwell

Arts & Sciences Electronic Theses and Dissertations

The tumor suppressor TP53 (p53) is the most frequently mutated gene in cancer and among the most mutated genes in brain cancer. Functionally, p53 is a transcription factor that, when activated by an array of stress stimuli, regulates a complex transcriptional program that contributes to a variety of antiproliferative pathways. The loss of p53 function (LOF), either through mutation, deletion, or inhibition by alterations in the proteins that regulate p53, removes an essential barrier to the unfettered proliferation and genomic instability that drive transformation. Unlike most tumor suppressors, many p53 mutations are missense mutations that lead to stable expression of …


Chemical Damage To Mrna And Its Impact On Ribosome Quality-Control And Stress-Response Pathways In Eukaryotic Cells, Liewei Yan Aug 2021

Chemical Damage To Mrna And Its Impact On Ribosome Quality-Control And Stress-Response Pathways In Eukaryotic Cells, Liewei Yan

Arts & Sciences Electronic Theses and Dissertations

Ribosome often faces defective adducts that disrupt its movement along the mRNA template. These adducts are primarily caused by chemical damage to mRNA and are highly detrimental to the decoding process on the ribosome. Hence, unless dealt with, chemical damage to RNA has been hypothesized to lead to the production of toxic protein products. Even more detrimental is the ability of damaged mRNA to drastically affect ribosome homeostasis through stalling. This in turn would lead to greatly diminished translation capacity of cells. Therefore, the inability of cells to recognize and resolve translational-stalling events is detrimental to proteostasis and could even …


Uncovering A Myc-Driven Tumor-Suppressive Program In Proliferating Lymphocytes, Elena Tonc Aug 2021

Uncovering A Myc-Driven Tumor-Suppressive Program In Proliferating Lymphocytes, Elena Tonc

Arts & Sciences Electronic Theses and Dissertations

Rapid cell proliferation is a hallmark feature of adaptive immune cells lymphocytes. It is essential for the establishment of diverse antigen receptor repertoires and amplification of antigen-specific immune responses. While such proliferation is beneficial for host protection from infections and cancers, it inevitably elevates the risk of oncogenic transformation. In developing and germinal center B lymphocytes, the risk is further increased by endogenous, genomic insults due to antigen receptor rearrangements and somatic mutations, with which expression of the proto-oncogene c-MYC is closely associated. Nonetheless, frequencies of cancers originated from B lymphocytes are relatively low, suggesting that they are protected from …


The Role Of Cd53 In Hematopoietic Development, Stress, And Malignancy, Zev Joshua Greenberg May 2021

The Role Of Cd53 In Hematopoietic Development, Stress, And Malignancy, Zev Joshua Greenberg

Arts & Sciences Electronic Theses and Dissertations

For a cell to function properly, it must be able to interact with and respond to environmental cues; however, expression of surface molecules, proteins, and receptors is not always sufficient to execute a cellular response. Proper organization of the plasma membrane is necessary to facilitate these highly regulated protein interactions, such that a cell can respond to stressors, growth factors, and other signaling molecules. Tetraspanins are a family of transmembrane proteins which help correctly orient surface molecules on the cell membrane, often through tetraspanin enriched microdomains, a membrane structure similar to lipid rafts. As a family, tetraspanins are known to …


Comprehensive Characterization Of The Genetic And Neoantigen Landscapes Of Follicular Lymphoma Patients Supports The Feasibility Of Personalized Cancer Vaccine Treatments, Cody Alexander Ramirez May 2021

Comprehensive Characterization Of The Genetic And Neoantigen Landscapes Of Follicular Lymphoma Patients Supports The Feasibility Of Personalized Cancer Vaccine Treatments, Cody Alexander Ramirez

Arts & Sciences Electronic Theses and Dissertations

Follicular lymphoma (FL) is the most common indolent non-Hodgkin’s lymphoma; however, it remains incurable with conventional therapies and is poorly responsive to checkpoint blockade. FL arises from B-lymphocytes and develops slowly (and often asymptomatically). A major research focus has been on how to avoid chemotherapy treatments, to limit the potential development of treatment-related side effects, and the risk of therapy-related second cancers. FL also carries an approximately 30% lifetime risk of transforming from an iNHL to more destructive lymphomas, which are associated with poorer prognosis. The most common transformation results in diffuse large B-cell lymphoma (DLBCL). However, many patients may …


Rhoa Mediated Juxtacrine Regulation Of Glucagon Secretion, Yong Hee Chung May 2021

Rhoa Mediated Juxtacrine Regulation Of Glucagon Secretion, Yong Hee Chung

Arts & Sciences Electronic Theses and Dissertations

Glucagon is secreted from pancreatic islet alpha-cells in response to hypoglycemia. The regulation of this secretion likely involves multiple interacting molecular pathways. There are three general types of proposed models for glucose-dependent regulation of glucagon secretion: direct regulation by glucose mediated modulation of cell electrophysiology, paracrine regulation by other endocrine cell types within the islets of Langerhans, and juxtacrine regulation by surface protein interactions from neighboring beta-cells. This work is focused on one pathway of juxtacrine regulation that occurs through signaling from EphA4 receptors on the surface of α-cells upon interaction with ephrin-A5 ligands on the surface of beta-cells. In …


Single-Cell Resolution Mechanistic Analyses Of Direct Lineage Reprogramming, Chuner Guo May 2021

Single-Cell Resolution Mechanistic Analyses Of Direct Lineage Reprogramming, Chuner Guo

Arts & Sciences Electronic Theses and Dissertations

End-stage organ failures remain a clinical challenge with an unmet need for medical therapies, with transplantation often being the only curative option. Despite advances in transplantation outcomes, organ shortage continues to limit the availability of cures to patients in need. The direct lineage reprogramming of one cell type to another is a promising avenue for therapy with the following advantages: (1) patient-specific cell sources, (2) direct conversion without reverting to pluripotency and the associated risk of teratoma formation, and (3) utilization of the cell type responsible for fibrotic scar formation for the engineering towards the desired cell fate. Nonetheless, many …


Homeostatic T Cell Receptor Interactions With Self-Peptide Tune Cd4+ T Cell Function, Juliet Marie Bartleson Jan 2021

Homeostatic T Cell Receptor Interactions With Self-Peptide Tune Cd4+ T Cell Function, Juliet Marie Bartleson

Arts & Sciences Electronic Theses and Dissertations

Homeostatic T Cell Receptor Interactions with Self-Peptide Tune CD4+ T Cell Function

by

Juliet Marie Bartleson

Doctor of Philosophy in Biology and Biomedical Sciences

Immunology

Washington University in St. Louis, 2021

Professor Paul M. Allen, Chair

Mature CD4+ T cells circulate throughout peripheral secondary lymphoid organs using their T cell receptor (TCR) to surveil peptide presented on major histocompatibility complex class II molecules (pMHC) in search of cognate, antigenic peptide. In the absence of an immune challenge, however, the TCR is continuously interacting with self-pMHC, which induces a relatively weak TCR signal known as tonic signaling. These homeostatic TCR:self-pMHC interactions …


The Role Of Mature Secretory Cells In Gastrointestinal Regeneration, Megan Deanna Radyk Jan 2021

The Role Of Mature Secretory Cells In Gastrointestinal Regeneration, Megan Deanna Radyk

Arts & Sciences Electronic Theses and Dissertations

Differentiated cells exhibit the ability to adjust their cell fate and become more progenitor-like after wide-scale tissue injury. This inherent cell plasticity is shown across many tissues and organisms and is a conserved behavior that ensures organ function even in a chronic injury setting. At the tissue level, the change in cell fate from a differentiated cell to one with more progenitor properties can be identified as metaplasia. Importantly, metaplasias, like Spasmolytic Polypeptide-Expressing Metaplasia (SPEM) in the stomach and Acinar-to-Ductal Metaplasia (ADM) in the pancreas, are risk factors for the development of adenocarcinoma. Thus, understanding the cellular and molecular mechanisms …


Contribution Of Tgf-B Signaling To The Pathogenesis Of Myeloproliferative Neoplasms, Juo-Chin Yao Jan 2021

Contribution Of Tgf-B Signaling To The Pathogenesis Of Myeloproliferative Neoplasms, Juo-Chin Yao

Arts & Sciences Electronic Theses and Dissertations

TGF-b expression is increased in most cases of myeloproliferative neoplasms (MPNs); however, its contribution to disease pathogenesis is not well understood. Here, we explore two specific hypotheses. First, we hypothesize that increased TGF-b signaling in mesenchymal stromal cells contributes to the development of myelofibrosis. Second, we hypothesize that Jak2 mutated hematopoietic stem cells (HSCs) are resistant to the growth suppressive effect of TGF-b, conferring a fitness advantage that contributes to their expansion in MPNs and clonal hematopoiesis. To test the first hypothesis, we abrogated TGF-b signaling in mesenchymal stem/progenitor cells by deleting Tgfbr2 using a doxycycline-repressible Osterix-Cre transgene (Osx-Cre), which …


Targeting The Phgdh-Mtor Metabolic Axis In Osteosarcoma, Richa Rathore Jan 2021

Targeting The Phgdh-Mtor Metabolic Axis In Osteosarcoma, Richa Rathore

Arts & Sciences Electronic Theses and Dissertations

Altering cellular energy metabolism has been highlighted as one of the emerging hallmarks of cancer. The reprogramming of bioenergetic pathways towards enhanced glycolysis, rather than the mitochondrial oxidative phosphorylation indicative of normal cells, results in increased biomass production and is associated with the activation of various oncogenes. The increased or decreased expression of key metabolic enzymes has been identified as a potential family of biomarkers that could serve as the targets for novel metabolic-based therapies in cancer.

The serine, glycine, and one-carbon (SGOC) metabolism pathway consists of a series of enzymes and metabolites that drive protein and lipid production, enhanced …


Regulation Of Yolk Microtubule Dynamics By Dachsous Cadherins, Gina Danielle Castelvecchi Aug 2020

Regulation Of Yolk Microtubule Dynamics By Dachsous Cadherins, Gina Danielle Castelvecchi

Arts & Sciences Electronic Theses and Dissertations

The process of epiboly, or the thinning and spreading of a tissue, is a well-conserved morphogenetic process. As one of four conserved gastrulation cell movements, epiboly is important to help organize the overall body plan. Epiboly in zebrafish involves the thinning and spreading of the blastoderm originating from the animal pole to completely enclose the yolk. It is driven by a multitude of physical processes that involve the three cell types comprising the embryo: the yolk syncytial layer (YSL), enveloping layer (EVL), and deep cells. These physical aspects can be broadly described as involving cell-cell interactions through adhesion proteins, actomyosin …


The Role Of Escrt-Iii-Like Subunit Ist1 In Membrane Trafficking Pathways, Amy Kate Clippinger Aug 2020

The Role Of Escrt-Iii-Like Subunit Ist1 In Membrane Trafficking Pathways, Amy Kate Clippinger

Arts & Sciences Electronic Theses and Dissertations

ESCRTs (Endosomal Sorting Complex Required for Transport) are a modular set of proteins with membrane remodeling activities that include the formation and release of intralumenal vesicles (ILVs) to generate multivesicular endosomes. ESCRT-III filaments have an established role in membrane fission for ILV formation and the topologically related processes of viral budding and cytokinesis. Among the 12 ESCRT-III proteins most have established roles in ILV formation, but the cellular roles of IST1 remain elusive. We found that IST1 and another ESCRT-III subunit CHMP1B form filaments that spiral around the outside or cytoplasmic surface of membrane tubules. Consistent with a role in …


The Role Of Cdx4 During Patterning Of Definitive Hemogenic Mesoderm, John Philip Creamer Aug 2020

The Role Of Cdx4 During Patterning Of Definitive Hemogenic Mesoderm, John Philip Creamer

Arts & Sciences Electronic Theses and Dissertations

The current standard of treatment for a variety of hematopoietic malignancies and genetic disorders is allogenic bone marrow transplantation, where donor hematopoietic stem cells (HSCs) engraft within the host and give rise to all of them hematopoietic lineages necessary for homeostasis. In many cases, finding a compatible human leukocyte antigen (HLA) matching donor is not possible, due to the large amount of genetic variation at those loci, but with the advent of induced pluripotent stem cells (iPSCs), unlimited sources of patient matched cells can be derived. Hematopoietic differentiations of human pluripotent stem cells (hPSCs) have been shown to recapitulate the …


Nonsense Mediated Rna Decay Promotes Survival Of Cells With Defective Splicing, Abigael Jeruto Cheruiyot May 2020

Nonsense Mediated Rna Decay Promotes Survival Of Cells With Defective Splicing, Abigael Jeruto Cheruiyot

Arts & Sciences Electronic Theses and Dissertations

Nonsense mediated RNA decay (NMD) is an RNA surveillance pathway present in all eukaryotes that detects and degrades nonsense mRNAs, which contain pre-mature translation termination codons. Nonsense mRNAs are prevalent when pre-mRNA splicing is altered or defective. Interestingly, defective pre-mRNA splicing is emerging as a major driver of cancer development, including development of myelodysplastic syndrome (MDS), leukemia, and some solid tumors. Moreover, pre-mRNA splicing is also thought to enhance NMD in human cells, although itճ still unclear whether and how splicing or splicing factors promote NMD. The role of NMD in regulating mis-spliced mRNA and the link between NMD and …


Post-Lysosomal Cholesterol Trafficking: Novel Tools And Insights, Mckenna Rae Feltes May 2020

Post-Lysosomal Cholesterol Trafficking: Novel Tools And Insights, Mckenna Rae Feltes

Arts & Sciences Electronic Theses and Dissertations

Cholesterol is an essential mammalian lipid. It is a major component of cellular membranes, a precursor molecule for the synthesis of hormones and bile acids, and a regulator of protein function. Although cholesterol is synthesized, de novo, in the endoplasmic reticulum, cells principally meet cholesterol requirements through uptake of lipoprotein particles. Lipoprotein-derived cholesterol is transported to the lysosome where it is transferred from the soluble lysosomal protein, NPC2, to limiting-lysosomal membrane protein NPC1. Cholesterol is then re-distributed to other cellular membranes in order to fulfill organellar cholesterol requirements; however, the cellular machineries involved in coordinating this distribution are poorly characterized. …


Investigating Biological Mechanisms Of Radiation Resistance In Advanced Stage Cervical Cancer, Fiona Ruiz Dec 2019

Investigating Biological Mechanisms Of Radiation Resistance In Advanced Stage Cervical Cancer, Fiona Ruiz

Arts & Sciences Electronic Theses and Dissertations

The current standard of care treatment for locally advanced cervical cancer is curative intent pelvic radiation with concurrently administered platinum chemotherapy (CRT). This treatment strategy is effective for many patients, but 33-50% of patients treated with CRT develop disease recurrence. Metastatic and recurrent cervical cancer is an incurable condition, and many of the currently available treatments are associated with significant morbidity and mortality. Identifying these patients upfront is a challenge that clinicians face when developing treatment strategies. Previous studies used to catalog the genomic and transcriptomic landscape of cervical cancer lacked high quality corresponding clinical follow up data for patients, …


T Cell Immunity In Pancreatic Cancer Is Undermined By Dendritic Cell Dysfunction, Samarth Hegde Dec 2019

T Cell Immunity In Pancreatic Cancer Is Undermined By Dendritic Cell Dysfunction, Samarth Hegde

Arts & Sciences Electronic Theses and Dissertations

Pancreatic cancer carries a dismal prognosis, and desperately needs viable therapeutic interventions beyond chemo-radiation. T cell-dependent immunotherapies have shown great promise in several tumor types, but have not been effective for the vast majority of pancreatic cancer patients. This is, in part, due to our limited understanding of how antigenicity of pancreatic lesions is recognized, and how adaptive immunity is overcome in this disease. We sought to study tumor-immune interactions and identify mechanisms for this immune-failure using several spontaneous and unperturbed mouse models of pancreatic adenocarcinoma. We found that early pancreatic lesions fail to elicit tumor-limiting CD4+ TH1 and CD8+ …


A Noncanonical Function Of The Telomerase Rna Component In Human Embryonic Stem Cells, Kirsten Ann Brenner Dec 2019

A Noncanonical Function Of The Telomerase Rna Component In Human Embryonic Stem Cells, Kirsten Ann Brenner

Arts & Sciences Electronic Theses and Dissertations

Telomeres are stretches of TTAGGG nucleotide repeats located at the ends of linear chromosomes that shorten with progressive cell division and prevent genomic instability at the cost of limiting a cell’s capacity to proliferate. This limitation can be overcome by telomerase, a ribonucleoprotein complex that elongates telomeres via reverse-transcription of the template telomerase RNA component (TERC). Recent studies have reported potential functions of TERC outside of its role in telomere maintenance. These noncanonical functions of TERC are however poorly defined, and the molecular mechanisms and biological relevance behind such functions remain elusive. Here, we generated conditional TERC knock-out human embryonic …


Dissemination Of The Apicomplexan Parasite, Toxoplasma Gondii, Lisa L. Drewry May 2019

Dissemination Of The Apicomplexan Parasite, Toxoplasma Gondii, Lisa L. Drewry

Arts & Sciences Electronic Theses and Dissertations

The parasitic protist Toxoplasma gondii is a common pathogen of rodents and felines that also infects humans. The most severe clinical manifestations of toxoplasmosis in humans derive from the systemic dissemination of T. gondii, during which the parasite penetrates biological barriers and accesses protected host compartments such as the central nervous system. T. gondii dissemination is enabled by the intrinsic gliding motility of extracellular parasites, which allows for travel to new host cells and tissues, and also powers the invasion of diverse host cells including migratory leukocytes. Dissemination is further advanced when migrating infected leukocytes shuttle intracellular parasites to new …


The Role Of Ifrd1 In The Recruitment And Function Of Reserve Stem Cells In Regeneration And Cancer, Mark Anthony Lewis May 2019

The Role Of Ifrd1 In The Recruitment And Function Of Reserve Stem Cells In Regeneration And Cancer, Mark Anthony Lewis

Arts & Sciences Electronic Theses and Dissertations

Mature cells can reprogram into a proliferative, progenitor-like state to repair tissue following injury and inflammation. Differentiated cells in diverse tissues can become proliferative via a dedicated, evolutionarily conserved program we termed paligenosis. We detailed how paligenosis occurs, in both gastric chief and pancreatic acinar cells, in a step-wise manner that involves: 1) autodegradation of mature cell components; 2) re-expression of progenitor genes; 3) re-entry into the cell cycle. This process is governed by mTORC1, a fundamental cellular energy sensor and regulator of protein translation. Blocking mTORC1 permitted autophagy and metaplastic gene induction but blocked cell cycle re-entry at S-phase. …


Development Of Novel Tumor-Targeted Compounds For Boron Neutron Capture Therapy, Micah John Luderer May 2019

Development Of Novel Tumor-Targeted Compounds For Boron Neutron Capture Therapy, Micah John Luderer

Arts & Sciences Electronic Theses and Dissertations

Glioblastoma multiforme (GBM) represents the most common primary brain tumor among adults. Despite surgical resection and aggressive chemoradiotherapy regimens, the current 2- and 5-year survival rates are only 27% and 9.8%, respectively. The low survival stems from the poor response to conventional therapy and underscores the critical need to develop new therapeutic approaches for GBM treatment. The high recurrence rate observed in GBM is in part attributed to the hypoxic (poorly oxygenated) tumor microenvironment. Hypoxic tumor conditions have been shown to increase metastasis, promote angiogenesis, and confer resistance to chemotherapy and radiation.

Hypoxic tissues are inherently radiation resistant due to …


The Role Of Smc3 In Mouse Embryonic And Adult Hematopoiesis, Tianjiao Wang May 2019

The Role Of Smc3 In Mouse Embryonic And Adult Hematopoiesis, Tianjiao Wang

Arts & Sciences Electronic Theses and Dissertations

Acute myeloid leukemia (AML) is a heterogeneous disease, characterized by recurrent genetic mutations. Mutations in the cohesin complex are one of the 8 functional categories of mutations in AML. SMC3 encodes a subunit of the cohesin complex, which has important roles in chromosome segregation, genome instability, and gene expression. In the first chapter of the dissertation, we discuss the genetics of AML, normal functions of the cohesin complex, and the interplay between cohesin mutations and myeloid malignancies.

SMC3 is recurrently mutated in AML and other myeloid malignancies. In the second chapter of the dissertation, we compare the consequences of Smc3 …


The Role Of Mesenchymal Stromal Cells And Classical Dendritic Cells In The Maintenance And Regulation Of The Bone Marrow Niche, Jingzhu Zhang Aug 2018

The Role Of Mesenchymal Stromal Cells And Classical Dendritic Cells In The Maintenance And Regulation Of The Bone Marrow Niche, Jingzhu Zhang

Arts & Sciences Electronic Theses and Dissertations

The bone marrow niche is an important microenvironment for the regulation of normal and malignant hematopoiesis. The first discovered niche component is mesenchymal stromal cells, which are the major source for the production and secretion of multiple niche factors. Mesenchymal stromal cells are heterogeneous and various transgenes have been used to target non-identical but overlapping subpopulations. To further characterize the heterogeneity of mesenchymal stromal cells, we tested the targeting specificity of three tissue-specific Cre-recombinase transgenes. We show that in addition to osteoblasts, Ocn-Cre targets a majority of Cxcl12-abundant reticular (CAR) cells and arteriolar pericytes. Surprisingly, Dmp1-Cre also targets a subset …


Circadian Regulation Of Temozolomide Sensitivity In Glioblastoma, Emily A. Slat May 2018

Circadian Regulation Of Temozolomide Sensitivity In Glioblastoma, Emily A. Slat

Arts & Sciences Electronic Theses and Dissertations

The safety and efficacy of multiple cancer chemotherapeutics can vary as a function of when during the day they are delivered. This study aimed to improve the treatment of glioblastoma multiforme (GBM), the most common brain cancer, by testing the efficacy of the DNA alkylator Temozolomide (TMZ) on GBM in vitro and in vivo as a function of time of day. We found cell-intrinsic, daily rhythms in susceptibility of GBM tumor cells (mouse astrocytes deficient in NF1 and p53 signaling) to TMZ in vitro. The greatest TMZ-induced DNA damage response, activation of apoptosis and growth inhibition, occurred near the peak …


Regulation Of Epithelial Proliferation And Migration By Apical-Basal Polarity Proteins, Gregory Vincent Schimizzi May 2018

Regulation Of Epithelial Proliferation And Migration By Apical-Basal Polarity Proteins, Gregory Vincent Schimizzi

Arts & Sciences Electronic Theses and Dissertations

Epithelial cells line all the outside surfaces of the body where they perform essential roles in maintaining homeostasis. In addition, epithelial tissues are implicated in many disease processes and are the most common tissue type to give rise to human cancer. Therefore, a thorough understanding of epithelial development and homeostasis has broad implications for understanding human development, health, and disease. The establishment and maintenance of apical-basal polarity is a defining characteristic and essential feature of functioning epithelia. Proper apical-basal polarity (ABP) is required for epithelial tissues to carry out their functions, which include absorption, secretion, barrier formation, and collective migration. …


The Ugly Sequestosome1:The Role Of P62/Sqstm1 In Autophagy And Multisystem Proteinopathy, Eugene Lee May 2018

The Ugly Sequestosome1:The Role Of P62/Sqstm1 In Autophagy And Multisystem Proteinopathy, Eugene Lee

Arts & Sciences Electronic Theses and Dissertations

Multisystem proteinopathy (MSP) defines a spectrum of degenerative diseases unified by TDP-43 pathology that affect muscle, brain and bone. Mutations in several proteins (VCP, p62/SQSTM1, HNRNPA2B1, HNRNPA1) can all cause MSP via impairments in autophagic protein degradation (VCP and SQSTM1) or RNA granule dynamics (HNRNPA2B1 and HNRNPA1). Phenotypically, MSP mutations lead to variable penetrance of several phenotypes: Paget’s disease of the bone (PDB), rimmed vacuolar inclusion body myopathy (RV-IBM), amyotrophic lateral sclerosis (ALS) or frontotemporal dementia (FTD). However, how a same mutation of a protein can develop different diseases remains unclear. Understanding of p62/SQSTM1 (SQSTM1) function is critical to answer …