Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Life Sciences

Tracking The Cellulolytic Activity Of Clostridium Thermocellum Biofilms, Alexandru Dumitrache, Gideon M. Wolfaardt, David Allen, Steven N. Liss, Lee R. Lynd Nov 2013

Tracking The Cellulolytic Activity Of Clostridium Thermocellum Biofilms, Alexandru Dumitrache, Gideon M. Wolfaardt, David Allen, Steven N. Liss, Lee R. Lynd

Dartmouth Scholarship

Microbial cellulose conversion by Clostridium thermocellum 27405 occurs predominantly through the activity of substrate-adherent bacteria organized in thin, primarily single cell-layered biofilms. The importance of cellulosic surface exposure to microbial hydrolysis has received little attention despite its implied impact on conversion kinetics.


Use Of Image Cytometry For Quantification Of Pathogenic Fungi In Association With Host Cells, Charlotte A. Berkes, Leo Li-Ying Chan, Alisha Wilkinson, Benjamin Paradis Jun 2013

Use Of Image Cytometry For Quantification Of Pathogenic Fungi In Association With Host Cells, Charlotte A. Berkes, Leo Li-Ying Chan, Alisha Wilkinson, Benjamin Paradis

Biology Faculty Publications

Studies of the cellular pathogenesis mechanisms of pathogenic yeasts such as Candida albicans, Histoplasma capsulatum, and Cryptococcus neoformans commonly employ infection of mammalian hosts or host cells (i.e. macrophages) followed by yeast quantification using colony forming unit analysis or flow cytometry. While colony forming unit enumeration has been the most commonly used method in the field, this technique has disadvantages and limitations, including slow growth of some fungal species on solid media and low and/or variable plating efficiencies, which is of particular concern when comparing growth of wild-type and mutant strains. Flow cytometry can provide rapid quantitative information regarding yeast …


A Single Point Mutation In The Listerial Betl Sigma(A)-Dependent Promoter Leads To Improved Osmo- And Chill-Tolerance And A Morphological Shift At Elevated Osmolarity, Ronald F. Hoffman, Susan Mclernon, Audrey Feeney, Colin Hill, Roy D. Sleator Mar 2013

A Single Point Mutation In The Listerial Betl Sigma(A)-Dependent Promoter Leads To Improved Osmo- And Chill-Tolerance And A Morphological Shift At Elevated Osmolarity, Ronald F. Hoffman, Susan Mclernon, Audrey Feeney, Colin Hill, Roy D. Sleator

Department of Biological Sciences Publications

Betaine uptake in Listeria monocytogenes is mediated by three independent transport systems, the simplest of which in genetic terms is the secondary transporter BetL. Using a random mutagenesis approach, based on the E. coli XL1 Red mutator strain, we identified a single point mutation in a putative promoter region upstream of the BetL coding region which leads to a significant increase in betL transcript levels under osmo- and chill-stress conditions and a concomitant increase in stress tolerance. Furthermore, the mutation appears to counter the heretofore unreported “twisted” cell morphology observed for L. monocytogenes grown at elevated osmolarities in tryptone soy …