Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 42

Full-Text Articles in Life Sciences

The Impact Of A Non-Ionic Adjuvant To The Persistence Of Pesticides On Produce Surfaces, Daniel Barnes Mar 2024

The Impact Of A Non-Ionic Adjuvant To The Persistence Of Pesticides On Produce Surfaces, Daniel Barnes

Masters Theses

Adjuvants can enhance the performance of the pesticide active ingredients in many ways including decreasing surface tension and reducing evaporation. Understanding how adjuvants effect pesticide behavior (e.g., surface persistence) is crucial for developing effective pesticide formulations, as well as facilitating the development of effective approaches to reduce pesticide residues from the surface of fresh produce post-harvest. The objective of this study is to investigate the effect of a non-ionic surfactant, Surf-Ac 910, on the persistence of two model pesticides, thiabendazole and phosmet on apple surfaces. The result shows that the addition of Surf-Ac 910 increased both the maximum wetted area …


An Investigation Of The Role Of Amygdalar Circuits In The Production Of Social Behavior, Joseph Fd Dwyer Nov 2023

An Investigation Of The Role Of Amygdalar Circuits In The Production Of Social Behavior, Joseph Fd Dwyer

Doctoral Dissertations

Adaptive social behaviors allow animals to survive, thrive, and successfully reproduce. These behaviors, including mating, parenting, affiliation, and aggression, can be stereotyped in response to specific stimuli but often display sex-specific, and interoceptive-dependent variations in their execution. A conserved set of brain regions collectively known as the social behavior network (SBN) interprets sensory information about social cues and generates an appropriate behavioral response. In this dissertation I present 5 chapters. Chapter 1 introduces historical research focusing on the neural circuits that drive social behavior and the potential impact of environmental factors on the activity of these circuits. Chapter 2 describes …


Production And Characterization Of Monoclonal Antibodies To Xenopus Proteins, Brett A. Horr Nov 2023

Production And Characterization Of Monoclonal Antibodies To Xenopus Proteins, Brett A. Horr

Masters Theses

Monoclonal antibodies are powerful and versatile tools that enable the study of proteins in diverse contexts. They are often utilized to assist with identification of subcellular localization and characterization of the function of target proteins of interest. However, because there can be considerable sequence diversity between orthologous proteins in Xenopus and mammals, antibodies produced against mouse or human proteins often do not recognize Xenopus counterparts. To address this issue, we refined existing mouse monoclonal antibody production protocols to generate antibodies against Xenopus proteins of interest. Here, we describe several approaches for the generation of useful mouse anti-Xenopus antibodies to multiple …


The Role Of Lkb1 Spliceoforms In Itreg-Th17 Plasticity And Their Interactions With Pkcθ And Sirt1 Downstream Of Il-6 Signaling, Deeksha Mohan Aug 2023

The Role Of Lkb1 Spliceoforms In Itreg-Th17 Plasticity And Their Interactions With Pkcθ And Sirt1 Downstream Of Il-6 Signaling, Deeksha Mohan

Doctoral Dissertations

Following activation, CD4 T cells undergo metabolic and transcriptional changes as they respond to external cues and differentiate into T helper (Th) cells. T cells exhibit plasticity between Th phenotypes in highly inflammatory environments, such as colitis, in which high levels of IL-6 promote plasticity between regulatory T (Treg) cells and Th17 cells. Protein Kinase C theta (PKCθ) is a T cell-specific serine/threonine kinase that promotes Th17 differentiation while negatively regulating Treg differentiation. Liver kinase B1 (LKB1), also a serine/threonine kinase and encoded by Stk11, is necessary for Treg survival and function. Stk11 can be alternatively spliced to produce a …


Comparison Of The Humoral Immune Response Following Both Bacterial Challenge And Rnai Of Major Factors On Proliferation Of Bartonella Quintana In The Human Louse, Jake Zina Oct 2022

Comparison Of The Humoral Immune Response Following Both Bacterial Challenge And Rnai Of Major Factors On Proliferation Of Bartonella Quintana In The Human Louse, Jake Zina

Masters Theses

Human body lice, Pediculus humanus humanus, and head lice, Pediculus humanus capitis, have been hematophagous ectoparasites of humans for thousands of years. Despite being ecotypes, only body lice are known to transmit bacterial diseases to humans, and it appears that lower humoral and cellular immune responses allow body lice to possess a higher vector competence. We previously observed that the transcription level of the defensin 1 gene was up-regulated only in head lice following oral challenge of Bartonella quintana, a causative agent of trench fever, and also that body lice excreted more viable B. quintana in their …


Frontiers In The Self-Assembly Of Charged Macromolecules, Khatcher O. Margossian Oct 2022

Frontiers In The Self-Assembly Of Charged Macromolecules, Khatcher O. Margossian

Doctoral Dissertations

The self-assembly of charged macromolecules forms the basis of all life on earth. From the synthesis and replication of nucleic acids, to the association of DNA to chromatin, to the targeting of RNA to various cellular compartments, to the astonishingly consistent folding of proteins, all life depends on the physics of the organization and dynamics of charged polymers. In this dissertation, I address several of the newest challenges in the assembly of these types of materials. First, I describe the exciting new physics of the complexation between polyzwitterions and polyelectrolytes. These materials open new questions and possibilities within the context …


Intracellular Delivery Of Therapeutic Biomolecules Through Versatile Polymer Nanotechnology, David C. Luther Oct 2022

Intracellular Delivery Of Therapeutic Biomolecules Through Versatile Polymer Nanotechnology, David C. Luther

Doctoral Dissertations

Advancing pharmaceutical technology has made it possible to treat diseases once considered ‘undruggable.’ Access to these new pharmaceutical targets is possible thanks to the advent of protein and nucleic acid therapeutics. Responses to the COVID-19 pandemic, as well as cutting-edge treatments for cancer and multiple sclerosis have centered on these biologic therapies, promising even greater value in the future. However, their utility is limited at a cellular level by inability to cross the plasma membrane. Nanocarrier technologies encapsulate therapeutics and facilitate uptake into the cell but are often trapped and degraded in endosomes. Arginine-functionalized gold nanoparticles (Arg-NPs) provide efficient, direct …


Investigation Of Kinase Conformational Dynamics And Analytes Detection With Protein Nanopore, Fanjun Li Oct 2022

Investigation Of Kinase Conformational Dynamics And Analytes Detection With Protein Nanopore, Fanjun Li

Doctoral Dissertations

Protein nanopores are pore-forming proteins which have been developed as single-molecule biosensors. Due to the high sensitivity, selectivity, label-free and real-time detection methodology, protein nanopores have been used for a wide variety of applications. In this dissertation, we use ClyA nanopore to investigate kinase conformational dynamics and develop a kinase/nanopore system for the specific detection of kinase allosteric inhibitors. Besides, we engineer OmpG nanopore to be a sensor for nucleic acid detection. Protein kinases play essential roles in cellular regulation by catalyzing the phosphorylation of target proteins and are promising drug targets. The conformational dynamics are critical for kinase functions. …


Characterizing Mechanical Regulation Of Bone Metastatic Breast Cancer Cells, Boyuan Liu Mar 2022

Characterizing Mechanical Regulation Of Bone Metastatic Breast Cancer Cells, Boyuan Liu

Doctoral Dissertations

Breast cancer most frequently metastasizes to the skeleton. Bone metastatic cancer is incurable and induces wide-spread bone osteolysis, resulting in significant patient morbidity and mortality. Mechanical stimuli in the skeleton are an important microenvironmental parameter that modulates tumor formation, osteolysis, and tumor cell-bone cell signaling, but which mechanical signals are the most beneficial and the corresponding molecular mechanisms are unknown. This work focused on bone matrix deformation and interstitial fluid flow based on their well-known roles in bone remodeling and in primary breast cancer. The goal of our research was to establish a platform that could define the relationship between …


Size Progression Of Oxygenic Photogranules (Opgs) And Its Effect On Opg Wastewater Treatment, Ahmed S.A. Abouhend Feb 2022

Size Progression Of Oxygenic Photogranules (Opgs) And Its Effect On Opg Wastewater Treatment, Ahmed S.A. Abouhend

Doctoral Dissertations

In recent years, the oxygenic photogranule (OPG) process has gained increasing interest because of its potential to treat wastewater without supplemental aeration. Oxygenic photogranules (OPGs) are dense spherical aggregates comprised of phototrophic and nonphototrophic microorganisms. In OPG wastewater treatment reactors, photogranules grow in number as well as in size. The primary goal of this dissertation was to investigate how OPGs grow in size and how the growth affects their structure and functions. We found that OPGs undergo structural changes as they grow bigger in size. As OPGs grow larger, filamentous cyanobacteria become enriched while other phototrophic microbes diminish significantly. OPGs …


Mapping Selected Polyphenols Metabolism By Gut Bacteria And Their Genes, Ermin Zhao Feb 2022

Mapping Selected Polyphenols Metabolism By Gut Bacteria And Their Genes, Ermin Zhao

Doctoral Dissertations

The human gut microbiome is a huge enzyme repository for dietary polyphenols metabolism, especially considering most of the polyphenols cannot be digested in the host and their biological functions are limited. Poor bioaccessibility based on traditional pharmaceutical ADME (absorption, distribution, metabolism, and excretion) assessment is the main problem facing the widely medical application of most polyphenols. Gut bacteria have the potential to mediate a wide range of biotransformation reactions of polyphenols, which leads to the production of many bioactive metabolites. In the past decades, mounting evidence in traditional ADME study have demonstrated gut bacteria play an irreplaceable role in dietary …


Extracellular Polymeric Substances In Oxygenic Photogranules: Investigation Of Their Role In Photogranulation In A Hydrostatic Environment, Wenye Camilla Kuo-Dahab Sep 2021

Extracellular Polymeric Substances In Oxygenic Photogranules: Investigation Of Their Role In Photogranulation In A Hydrostatic Environment, Wenye Camilla Kuo-Dahab

Doctoral Dissertations

The purpose of this dissertation was to assess the critical role of extracellular polymeric substances (EPS) in the photogranulation of activated sludge, in a hydrostatic environment. The first section evaluates the fate and dynamics of different fractions of EPS in sludge-based photogranulation under hydrostatic conditions. The study shows that during the transformation of activated sludge into a photogranular biomass, sludge’s base-extractable proteins selectively degrade. Strong correlations between base-extracted proteins and the growth of chlorophyll a and chlorophyll a/b ratio suggest that the bioavailability of this organic nitrogen is linked with selection and enrichment of filamentous cyanobacteria under hydrostatic conditions. The …


Defining The Role Of Rbbp4 In Oocyte Maturation And Preimplantation Development Using Trim-Away, Holly L. Barletta Jul 2021

Defining The Role Of Rbbp4 In Oocyte Maturation And Preimplantation Development Using Trim-Away, Holly L. Barletta

Masters Theses

Retinoblastoma-binding protein 4 (RBBP4) is a subunit of chromatin remodeling factor 1 (CAF-1) and is essential for mammalian oocyte maturation, embryo survival, and embryo implantation. RBBP4 also localizes to the chromatin and is a ubiquitously expressed nuclear protein. Previous methods used to study this protein include short interfacing RNAs (siRNAs) and CRISPR/Cas9. These techniques have limitations such as determining an indirect depletion of proteins, may trigger compensatory mechanisms, and may not be useful in non-dividing primary cells. A new, acute, and rapid endogenous protein depletion technique called Trim-Away, can overcome these limitations. Trim-Away is also widely applicable since it can …


Novel Approaches Towards Improved Purity In High Yield Transcription Reactions, Elvan Cavac Jun 2021

Novel Approaches Towards Improved Purity In High Yield Transcription Reactions, Elvan Cavac

Doctoral Dissertations

High yields of RNA (e.g., mRNA, gRNA, lncRNA) are routinely prepared following a two-step approach: high yield in vitro transcription using T7 RNA polymerase, followed by extensive purification using gel or chromatic methods. In high yield transcription reactions, as RNA accumulates in solution, T7 RNA polymerase rebinds and extends the encoded RNA (using the RNA as a template), resulting in a product pool contaminated with longer than desired, (partially) double stranded impurities. Current purification methods often fail to fully eliminate these impurities which, if present in therapeutics, can stimulate the innate immune response with potentially fatal consequences. This study establishes …


Controlled Membrane Remodeling By Nanospheres And Nanorods: Experiments Targeting The Design Principles For Membrane-Based Materials, Sarah Zuraw-Weston Dec 2020

Controlled Membrane Remodeling By Nanospheres And Nanorods: Experiments Targeting The Design Principles For Membrane-Based Materials, Sarah Zuraw-Weston

Doctoral Dissertations

In this thesis we explore two experimental systems probing the interactions of nanoparticles with lipid bilayer membranes. Inspired by the ability of cell membranes to alter their shape in response to bound particles, we report two experimental studies: one of nanospheres the other of long, slender nano-rods binding to lipid bilayer vesicles and altering the membrane shape. Our work illuminates the role of particle geometry, particle concentration, adhesion strength and membrane tension in how membrane morphology is determined. We combine giant unilamellar vesicles with oppositely charged nanoparticles, carefully tuning adhesion strength, membrane tension and particle concentration. In the case of …


Micro-Physiological Models To Mimic Mucosal Barrier Complexity Of The Human Intestine In Vitro, Abhinav Sharma Dec 2020

Micro-Physiological Models To Mimic Mucosal Barrier Complexity Of The Human Intestine In Vitro, Abhinav Sharma

Doctoral Dissertations

The mucosal barrier in the intestine is vital to maintain selective absorption of nutrients while protecting internal tissues and maintaining symbiotic relationship with luminal microbiota. This bio-barrier consists of a cellular epithelial barrier and an acellular mucus barrier. Secreted mucus regulates barrier function via in situ biochemical and biophysical interaction with luminal content that continually evolves during digestion and absorption. Increasing evidence suggests that a mucus barrier is indispensable to maintain homeostasis in the gastrointestinal tract. However, the importance of mucus barrier is largely underrated for in vitro mucosal tissue modeling. The major gap is the lack of experimental material …


The Catalytic Urease Subunit Urec Is Critical For Bifidobacterium Longum Urea Utilization, Yang Lyu Oct 2019

The Catalytic Urease Subunit Urec Is Critical For Bifidobacterium Longum Urea Utilization, Yang Lyu

Doctoral Dissertations

In the first study, we investigated the utilization of a human milk nitrogen source, urea, by Bifidobacterium. Urea accounts for ~15% in human milk, which is an abundant non-protein nitrogen (NPN). Some bifidobacteria are found to harbor urease gene clusters that potentially enable their hydrolysis of the human milk urea. However, the underlying mechanisms are still unclear. To incisively link the urease gene cluster with bifidobacterial urea utilization, chemical mutagenesis (i.e. ethyl methanesulfonate) was performed on the urease-positive Bifidobacterium longum subsp. suis UMA399. Mutants were selected on differential media and genetic lesions were identified using whole genome sequencing. …


Engineering Of An Antibody-Conjugated Nanogel Platform For Targeted Drug Delivery To T Lymphocytes, Mine Canakci Oct 2019

Engineering Of An Antibody-Conjugated Nanogel Platform For Targeted Drug Delivery To T Lymphocytes, Mine Canakci

Doctoral Dissertations

In an ideal chemotherapy, cytotoxic drugs travel through the bloodstream, reach cells all over the body and preferentially kill abnormal cells. Yet, the hydrophilic or lipophilic property of the small-molecule drugs affects their ability to reach cells from the bloodstream. So, only a small portion of the drug reaches to the diseased tissue. A selective cell killing approach for cancer therapy gained momentum after the realization that cancer cells carry unique set of molecular markers on their cell surface. The development of antibody drug conjugates (ADC) revolutionized the targeted approach for drug delivery. ADCs are composed of cytotoxic agents covalently …


Investigating The Role Of Lbh During Early Embryonic Development In Xenopus Laevis, Emma Weir Oct 2019

Investigating The Role Of Lbh During Early Embryonic Development In Xenopus Laevis, Emma Weir

Masters Theses

LBH is a highly conserved protein whose role during vertebrate development is relatively under-studied. In collaboration with the Albertson lab, our lab has previously shown that it is necessary for cranial neural crest cell migration in the zebrafish and in Xenopus laevis. The molecular mechanisms through which it acts are not well understood.

In Xenopus, LBH is a maternally deposited protein. As such, studying its role in early development has not been feasible through the morpholino-mediated knockdown techniques that prevent translation of target genes. Recently, a technique for degrading endogenous proteins was developed, called Trim-Away. This was developed in mammalian …


Protein-Nanoparticle Co-Engineering: Self-Assembly, Intracellular Protein Delivery, And Crispr/Cas9-Based Gene Editing, Rubul Mout Nov 2017

Protein-Nanoparticle Co-Engineering: Self-Assembly, Intracellular Protein Delivery, And Crispr/Cas9-Based Gene Editing, Rubul Mout

Doctoral Dissertations

Direct cytoplasmic delivery of gene editing nucleases such CRISPR/Cas9 systems and therapeutic proteins provides enormous opportunities in curing human genetic diseases, and assist research in basic cell biology. One approach to attain such a goal is through engineering nanotechnological tools to mimic naturally existing intra- and extracellular protein delivery/transport systems. Nature builds transport systems for proteins and other biomolecules through evolution-derived sophisticated molecular engineering. Inspired by such natural assemblies, I employed molecular engineering approaches to fabricate self-assembled nanostructures to use as intracellular protein delivery tools. Briefly, proteins and gold nanoparticles were co-engineered to carry complementary electrostatic recognition elements. When these …


Pore Forming Protein Assembly And The Use In Nanopore Sensing: A Study On E. Coli Proteins Clya And Ompg, Monifa Fahie Nov 2017

Pore Forming Protein Assembly And The Use In Nanopore Sensing: A Study On E. Coli Proteins Clya And Ompg, Monifa Fahie

Doctoral Dissertations

Pore forming proteins are typically the proteins that form channels in membranes. They have several roles ranging from molecule transport to triggering the death of a cell. This work focuses on two E. coli pore forming proteins that have vastly differing roles in nature. Outer membrane protein G (OmpG) is an innocuous β-barrel porin while Cytolysin A (ClyA) is an α-helical pore forming toxin. For OmpG we probed its potential to be a nanopore sensor for protein detection and quantification. A small high affinity ligand, biotin, was covalently attached to loop 6 of OmpG and used to capture biotin-binding proteins. …


Microbial Dynamics And Design Considerations For Decentralized Microbial Fuel Cell Applications, Cynthia Castro Nov 2017

Microbial Dynamics And Design Considerations For Decentralized Microbial Fuel Cell Applications, Cynthia Castro

Doctoral Dissertations

The purpose of this dissertation was to assess the practicality of using microbial fuel cells (MFCs) as alternative sanitation systems for wastewater treatment and energy recovery, focusing on identifying key design considerations for treating high strength wastewater and managing alternative metabolic pathways. We evaluated the energetic outputs of a lab-based pilot MFC designed to treat complex organics present in both synthetic feces and municipal wastewater. The pilot MFC produced two energetic products, methane and electricity, when treating two types of complex wastewaters. The energetic products associated with anode respiration and methanogenesis were simultaneously observed and yielded a combined energy ouput …


Robust Biosensors For Healthcare Applications: From High-Content Screening To Point-Of-Care Testing, Ngoc D. B. Le Nov 2017

Robust Biosensors For Healthcare Applications: From High-Content Screening To Point-Of-Care Testing, Ngoc D. B. Le

Doctoral Dissertations

Efficient detection of proteins, mammalian cells, microorganisms and other biological systems in complex mixture is essential in disease diagnosis and environmental health. Therefore, technological platforms that provide sensors of high sensitivity, selectivity and stability are greatly desired. Recently, the ‘chemical-nose’ sensing approach has proved to be an effective strategy for profiling bio-relevant targets in complex mixtures. Detecting analytes in complex mixture is a challenge that conventional specificity-based sensors are still trying to solve due to the requirement of prior knowledge of the analyte, which is unknown in many cases. This thesis focuses on how to develop simple and robust …


Calcium And Metabolism In Sperm: Fundamental Players For Fertilization And Embryo Development, Felipe Navarrete Jul 2017

Calcium And Metabolism In Sperm: Fundamental Players For Fertilization And Embryo Development, Felipe Navarrete

Doctoral Dissertations

Mammalian sperm acquire the fertilizing ability in the female tract in a process known as capacitation. At the molecular level, capacitation is associated with the up-regulation of a cAMP-dependent pathway, changes in intracellular pH, intracellular Ca2+, ATP consumption and an increase in tyrosine phosphorylation. However, little is known about the function of Ca2+ and ATP during this important process. These signaling systems interact during capacitation are still not well understood. Results presented in this study indicate that Ca2+ ions have a biphasic role in the regulation of cAMP-dependent signaling. Sperm incubated in zero Ca2+ in …


Colicins - A Sound Antimicrobial Approach For The Prevention Of Catheter-Associated Urinary Tract Infections, Sandra M. Roy Mar 2017

Colicins - A Sound Antimicrobial Approach For The Prevention Of Catheter-Associated Urinary Tract Infections, Sandra M. Roy

Doctoral Dissertations

The emergence and spread of antibiotic resistance has created one of the greatest challenges in fighting infectious disease. We address the rise of antibiotic-resistant pathogens by examining the evolutionary history of a class of resistance determinants, the SHV b-lactamases. We isolated the genes that encode the SHV beta-lactamases (blaSHV genes) from clinical settings and from an environment essentially devoid of antibiotic use. Our data suggests that, counter to current dogma, the use of antibiotics in the clinic is not creating these resistance genes; genes for antibiotic resistance already exist in nature and our use of antibiotics in clinical …


Novel Advancements For Improving Sprout Safety, Kyle S. Landry Jul 2016

Novel Advancements For Improving Sprout Safety, Kyle S. Landry

Doctoral Dissertations

All varieties of bean sprouts (mung bean, alfalfa, broccoli, and radish) are classified as a “super-food” and are common staples for health conscious consumers. Along with the proposed health benefits, there is also an inherent risk of foodborne illness. When sprouts are cooked, there is little risk of illness. The purpose of this dissertation was to explore novel techniques to minimize or prevent the incidence of foodborne illness associated with the consumption of sprouts. Three areas were investigated: 1) the use of a biocontrol organism, 2) the use of a novel spontaneous carvacrol nanoemulsion, and 3) the influence of the …


Bacteriophage: Bioengineered Bacterial Detection And Applications, Samuel D. Alcaine Mar 2016

Bacteriophage: Bioengineered Bacterial Detection And Applications, Samuel D. Alcaine

Doctoral Dissertations

Bacteria are ubiquitous and vital constituents of our environment, our foods, and our bodies. A small percentage of this vast, microbial population is pathogenic to humans, but represents a significant burden on public health. There is a current public health focus on two subgroups: foodborne pathogenic bacteria and antibiotic resistance bacteria. A key challenge for public health is the rapid identification of these bacteria to prevent their consumption and to ensure proper treatment for infections. This challenge calls for the development of novel, low-cost diagnostics that combine sensitivity and accuracy with speed and ease-of-use. Bacteriophages represent rapid, readily targeted, and …


Promoting Extracellular Matrix Crosslinking In Synthetic Hydrogels, Marcos M. Manganare Nov 2015

Promoting Extracellular Matrix Crosslinking In Synthetic Hydrogels, Marcos M. Manganare

Masters Theses

The extracellular matrix (ECM) provides mechanical and biochemical support to tissues and cells. It is crucial for cell attachment, differentiation, and migration, as well as for ailment-associated processes such as angiogenesis, metastases and cancer development. An approach to study these phenomena is through emulation of the ECM by synthetic gels constructed of natural polymers, such as collagen and fibronectin, or simple but tunable materials such as poly(ethylene glycol) (PEG) crosslinked with short peptide sequences susceptible to digestion by metalloproteases and cell-binding domains. Our lab uses PEG gels to study cell behavior in three dimensions (3D). Although this system fosters cell …


Studying Nanoparticle/Cell And Nanoparticle/Biosurface Interaction With Mass Spectrometry, Singyuk Hou Nov 2015

Studying Nanoparticle/Cell And Nanoparticle/Biosurface Interaction With Mass Spectrometry, Singyuk Hou

Masters Theses

Nanoparticles (NPs) have been used widely in various fields ranging from biomedical applications to life science due to their highly tunable properties. It is essential to understanding how NPs interact with biological systems of interest, therefore, analytical platforms to efficiently track NPs from cell to animal level are essential. In this thesis, laser desorption ionization mass spectrometry (LDI-MS) and inductively-coupled plasma mass spectrometry (ICP-MS) has been developed and applied to quantify NP/cell and NP/biological surface interactions. These two methods provide fast, label-free and quantitative analysis. New capability of LDI-MS to differentiate cell surface-bound and internalized NPs were established and ICP-MS …


Effects Of Overexpression Of Sap12 And Sap13 In Providing Tolerance To Multiple Abiotic Stresses In Plants, Parul R. Tomar Nov 2015

Effects Of Overexpression Of Sap12 And Sap13 In Providing Tolerance To Multiple Abiotic Stresses In Plants, Parul R. Tomar

Doctoral Dissertations

Environmental stresses are the one of the main reasons for the decline of crop production worldwide. In the past years, a major focus has been on improving plant species and their tolerance towards these stresses but not much has been achieved because of the limited knowledge of the gene/network of genes that might be involved in providing tolerance to such multiple abiotic stresses. Recently, members of Stress Associated Protein (SAP) family in plants have been shown to impart tolerance to multiple abiotic stresses. There are 14 SAP genes in Arabidopsis thaliana and these proteins contain A20, AN1 and C2H2 zinc …