Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Life Sciences

Data-Driven Modeling Of The Causes And Effects Of Interneuronal Dysfunction In Alzheimer’S Disease And Dravet Syndrome, Carlos Perez Nov 2020

Data-Driven Modeling Of The Causes And Effects Of Interneuronal Dysfunction In Alzheimer’S Disease And Dravet Syndrome, Carlos Perez

USF Tampa Graduate Theses and Dissertations

One of the defining features of Alzheimer’s disease (AD) is the increased cleavage of the amyloid precursor protein (APP), causing abnormally high levels of the aggregation form of amyloid beta (Aβ ). Many studies have shown that both AD patients and AD mice models exhibit abnormal network activity, including hypersynchronous excitatory neuron behavior, altered brain rhythms, and in some instances epileptic seizures when exposed to high levels of Aβ In particular, strong experimental evidence suggests that it is the small globular amyloid oligomers (gOs) and curvilinear fibrils (CFs) rather than the more stable, late stage rigid fibrils (RFs) that cause …


Origins Of Amyloid Oligomers And Novel Approaches For Their Detection, Jeremy Barton Nov 2020

Origins Of Amyloid Oligomers And Novel Approaches For Their Detection, Jeremy Barton

USF Tampa Graduate Theses and Dissertations

Alzheimer’s disease, type II diabetes, and other amyloid diseases are known to be associated with the formation of amyloid aggregates. It has been thoroughly researched whether amyloid fibrils or oligomers are the main culprit for these diseases, and recent evidence has connected oligomers as the most disease relevant aggregate species. However, many difficulties have arose in confirming this hypothesis. Techniques for oligomer detection are often limited in their sensitivity, and in many cases are unable to distinguish oligomers from rigid fibrils. Additionally, the role oligomer splay in fibril assembly is still unclear, and has led to the belief that different …


The Impacts Of Membrane Modulators On Membrane Material Properties At Microscopic And Nanoscopic Levels, Chinta Mani Aryal Oct 2020

The Impacts Of Membrane Modulators On Membrane Material Properties At Microscopic And Nanoscopic Levels, Chinta Mani Aryal

USF Tampa Graduate Theses and Dissertations

Peptide-membrane interactions depict the cell’s response to an external molecule. This is a critical event to evaluate the peptide’s function and effect as well as the response of target molecule. The understanding of the mechanism of action of peptide in a molecular level is important, for example, this may be useful in developing the therapeutic strategy. Peptides are the functional macromolecules which are actively researched among bio-related fields. Model membrane systems that mimic the real cell have been useful platform to test the perturbation upon peptide addition. In this thesis, we investigate the membrane modulation behavior of three peptides (modulators) …


Study Of The Therapeutic Effects Of Synchronization-Modulation Of The Na/K Pump On Muscle Fatigue, Jason E. Mast Apr 2020

Study Of The Therapeutic Effects Of Synchronization-Modulation Of The Na/K Pump On Muscle Fatigue, Jason E. Mast

USF Tampa Graduate Theses and Dissertations

It has been shown that by applying a specially designed oscillating external electric field to a cell membrane that the membrane's sodium/potassium pumps can be synchronized to all work at the same rate. Then by slowly increasing the electric field's frequency the pumps' turnover rate can also be increased. By increasing the pumps' turnover rate, the sodium and potassium concentration gradients can be increased, this type of stimulation is called synchronization-modulation. There are three generations of the synchronization-modulation waveform each with different utilities. In particular, the third generation of synchronization-modulation has the ability to use the energy of the external …


Allosteric Control Of Proteins: New Methods And Mechanisms, Nalvi Duro Apr 2020

Allosteric Control Of Proteins: New Methods And Mechanisms, Nalvi Duro

USF Tampa Graduate Theses and Dissertations

Allostery describes the phenomenon where perturbations in one region of a protein affect protein behavior in another non-overlapping region. Considerable efforts made over decades to understand the molecular basis of allostery, yet an overarching theory that can predict signaling pathways and contributions from chemical components is still lacking. In fact, molecular details in even the most well-studied of model systems, PDZ domains and GPCRs, remain unclear. In this dissertation I use molecular simulation methods to understand the role of allostery in the regulated entry of paramyxovirus into host cells, and also develop a new method to determine time-dependent signaling pathways …


Development And Application Of Computational Models For Biochemical Systems, Fiona L. Kearns Feb 2020

Development And Application Of Computational Models For Biochemical Systems, Fiona L. Kearns

USF Tampa Graduate Theses and Dissertations

Chemistry is the study of matter and its transformations. Computational chemistry uses computer models to study chemistry in all its intricate complexity. In this thesis I hope to accessibly introduce fundamental concepts central for computational chemistry including quantum mechanics, molecular mechanics, and multiscale modeling. I then present several works which I have conducted throughout my graduate career employing many different computational methods. The investigations described here can be summarized as follows. Chapter 2.1 modeling proteins involved in crustacean molting, and identifying possible inhibitors to this molting. Chapter 2.2 modeling d-fructose bound to synthetic saccharide receptors with hopes of improving saccharide …


Evaluation Of Optimal Technique For Left Breast Irradiation, Amitpal Singh Saini Feb 2020

Evaluation Of Optimal Technique For Left Breast Irradiation, Amitpal Singh Saini

USF Tampa Graduate Theses and Dissertations

Numerous studies have indicated that radiation therapy reduces the risk of the local recurrence of breast cancer in several cases and that it has increased the overall survival rate. Although radiation therapy is beneficial for the treatment of breast cancer, it is known to increase the risk of both radiation toxicity and secondary breast cancer. In left-sided breast cancer, radiation therapy treatment often leads to the heart and its components—such as the left ventricle and left anterior descending artery—being exposed to high doses of radiation because of the proximity of the heart to the left breast, resulting in cardiac complications …