Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Biophysics

PDF

Institution
Keyword
Publication Year
Publication
Publication Type

Articles 1 - 30 of 923

Full-Text Articles in Life Sciences

Prostate Tissue Motion Tracking And Ultrasound Elastography Using Tissue Mechanics Derived Constraints, Tristan S. Curry Aug 2024

Prostate Tissue Motion Tracking And Ultrasound Elastography Using Tissue Mechanics Derived Constraints, Tristan S. Curry

Electronic Thesis and Dissertation Repository

Current prostate cancer detection methods can be costly to obtain, such as magnetic resonance imaging, or lack specificity, such as a digital rectal exam. Ultrasound elastography, a method that can be used to develop and test algorithms that output stiffness, strain, and displacement data captured by ultrasound radio frequency readings, offers a potential solution to these challenges. An initial algorithm utilizing dynamic programming and analytic minimization estimates the radial and angular displacements from a pre- and post-compression data set to determine the required material properties. This estimate of displacements is then refined through an algorithm where incompressibility, Laplacian smoothing, and …


The Role Of Efflux Pump Inhibitor In Enhancing Antimicrobial Efficiency Of Silver Nanoparticles And Methylene Blue As An Effective Photodynamic Therapy Agent, Yaran Allamyradov Aug 2024

The Role Of Efflux Pump Inhibitor In Enhancing Antimicrobial Efficiency Of Silver Nanoparticles And Methylene Blue As An Effective Photodynamic Therapy Agent, Yaran Allamyradov

Masters Theses & Specialist Projects

Efflux pumps are critical active transport systems utilized by cells to expel toxic substances, including antibiotics and photosensitizer complexes, thereby contributing to antimicrobial resistance. Efflux pump inhibitors (EPIs), which are compounds that obstruct the transport of molecules through these pumps, play a pivotal role in enhancing the effectiveness of antimicrobial therapies against pathogens. This study investigates the effects of the EPI reserpine on the photodeactivation rate of pathogens when used in conjunction with silver nanoparticles (Ag NPs) and methylene blue (MB), a common photosensitizer.

Our research reveals that the application of reserpine, in combination with Ag NPs and MB, leads …


Structural Analysis Of Dj-1 Glyoxalase Activity By Mix-And-Inject Serial Synchrotron Crystallography, Coleman Dolamore Jul 2024

Structural Analysis Of Dj-1 Glyoxalase Activity By Mix-And-Inject Serial Synchrotron Crystallography, Coleman Dolamore

Department of Biochemistry: Dissertations, Theses, and Student Research

Observing enzyme structures while they are catalyzing a reaction has been a major goal of both enzymology and structural biology for decades. With the advent of time-resolved serial X-ray crystallography using X-ray free electron lasers (XFELs) and synchrotron sources, enzyme reactions can be monitored in real time in crystallo. Here, we use two different approaches to study related enzymes involved in methylglyoxal detoxification. For human DJ-1, we used pink beam mix-and-inject serial crystallography (MISC) at the Advanced Photon Source (BioCARS 14-ID) to probe the controversial mechanism of DJ-1’s action on methylglyoxal by using serial Laue diffraction. The high flux …


Microstructural Mri Evolution During Adult Mouse Brain Maturation And Concussion Recovery, Naila Rahman May 2024

Microstructural Mri Evolution During Adult Mouse Brain Maturation And Concussion Recovery, Naila Rahman

Electronic Thesis and Dissertation Repository

Mild traumatic brain injury (mTBI), also called concussion, has become a significant public health concern. Current clinical neuroimaging techniques lack the sensitivity and specificity required to reliably detect signs of concussion, as large-scale changes are absent. Diffusion magnetic resonance imaging (dMRI) has arguably had the greatest influence to-date of neuroimaging modalities in mTBI, but previous studies have reported inconsistent findings, as standard dMRI lacks specificity and provides a limited model of neuroanatomy. This thesis explores the application of microstructural MR methods, that go beyond standard dMRI to improve sensitivity and specificity, to a preclinical model of mTBI and adult brain …


Assessing The Pre- And Post-Synaptic Effects Of Opioids On Inspiratory Rhythmogenesis, Jingzhi Zhao, Diego Morandi Zerpa May 2024

Assessing The Pre- And Post-Synaptic Effects Of Opioids On Inspiratory Rhythmogenesis, Jingzhi Zhao, Diego Morandi Zerpa

Biology and Medicine Through Mathematics Conference

No abstract provided.


The Interactions Of Centromeric Nucleosomes Elucidated By Atomic Force Microscopy, Shaun Filliaux May 2024

The Interactions Of Centromeric Nucleosomes Elucidated By Atomic Force Microscopy, Shaun Filliaux

Theses & Dissertations

Nucleosomes are the fundamental unit of compaction for DNA in the genome. These positively charged proteins have two main types of nucleosomes: canonical (H3 containing) and centromere (CENP-A containing). The compacting of DNA allows for DNA to fit into the nucleus of cells, but creates a barrier for DNA accessibility for operations such as replication or transcription. Centromeric chromatin is a subset of chromatin structure and governs chromosome segregation. Compared to the bulk chromosome, centromeres are composed of H3 and CENP-A nucleosomes in which H3 histones is replaced by its homolog CENP-A histone. This results in nucleosomes with different structures, …


Assessing Nordihydroguaiaretic Acid Properties And Its Potential Therapeutic Effect For Glioblastoma, Jose Arturo Guerrero May 2024

Assessing Nordihydroguaiaretic Acid Properties And Its Potential Therapeutic Effect For Glioblastoma, Jose Arturo Guerrero

Open Access Theses & Dissertations

This study employs a combination of theoretical and experimental analysis to spectroscopically investigate the biomechanistic structure relationship and therapeutic effects of the Nordihydroguaiaretic Acid (NDGA) chemical derived from the Larrea Tridentata plant. These relationships are crucial for understanding NDGA's efficacy in disease prevention, treatment, and potential toxicological effects. While the medicinal and antiviral properties of the NDGA have been studied extensively, there remains a gap in optically identifying and reporting its structural changes. The current research successfully reveals evident trends in NDGA's vibrational signatures, particularly highlighting the absence of the Raman feature at 780 〖cm〗^(-1) as indicative of a fully …


Intrinsically Disordered Proteins And Their Role In Biomolecular Condensates, Danielle Latham May 2024

Intrinsically Disordered Proteins And Their Role In Biomolecular Condensates, Danielle Latham

All Dissertations

Proteins are biomacromolecules responsible for the functions of life. While classically proteins are thought to be well structured in order to perform a specific function, 50% of proteins within Eukaryotic cells contain intrinsically disordered regions (IDRs), regions with no well-defined structure. IDRs are often used for cell signaling, responding to external factors such as temperature changes or the presence of small molecules. To understand how IDRs can function without structure, it is important to understand the dynamics of such systems. Understanding IDR intramolecular and intermolecular interactions will shed light on IDR dynamics. Intramolecular interactions are first explored using fluorescence spectroscopy …


Computational Study Of Confined Cytoskeletal Assemblies: Simple Rules, Complex Behavior, Oghosa Honor Akenuwa May 2024

Computational Study Of Confined Cytoskeletal Assemblies: Simple Rules, Complex Behavior, Oghosa Honor Akenuwa

Doctoral Dissertations

The actin cytoskeleton is crucial for cellular processes and proper organization in cells. Physical regulators like actin crosslinking proteins, molecular motors, and physical confinement significantly impact the organization of the actin cytoskeleton. Despite advances, much remains unknown about how these physical regulators affect actin organization. In this thesis, we employ coarse-grained computer simulations to investigate the effect of physical regulators on the dynamics and organization of semiflexible actin filaments. First, we explore the role of crosslinker properties and confinement shape on actin organization by varying the system shape, the number and type of crosslinking proteins, and the length of filaments. …


An Investigation Into The Structural Features That Control Factor Xiii Stability And Substrate Specificity., Rameesa Darul Amne Syed Mohammed May 2024

An Investigation Into The Structural Features That Control Factor Xiii Stability And Substrate Specificity., Rameesa Darul Amne Syed Mohammed

Electronic Theses and Dissertations

Factor XIII (FXIII) is a transglutaminase enzyme with multiple physiological roles that is found in plasma and cells of bone marrow origin. The catalytic A subunit (FXIII-A) is made of an N-terminal activation peptide (AP), β-sandwich, catalytic core, and two β-barrel domains. FXIII crosslinks the sidechains of glutamine (Q) and lysine (K) residues across plasmatic and cellular substrates. Because of its involvement in clot stabilization and determining fibrin clot size, FXIII-A is regarded as a target for developing new anticoagulants with minimal bleeding risks. However, the FXIII-A structural features that control its stability and substrate specificity largely remain unknown. Plasma …


Implementing Fret Spectrometry Using Time Resolved Fluorescence Microscopy For Determination Of Protein Oligomer Size And Geometry In Live Cells, Aliyah Sephrah Khan May 2024

Implementing Fret Spectrometry Using Time Resolved Fluorescence Microscopy For Determination Of Protein Oligomer Size And Geometry In Live Cells, Aliyah Sephrah Khan

Theses and Dissertations

Fӧrster or Fluorescence Resonance Energy Transfer (FRET) is a biological phenomenon that occurs when energy is transferred non-radiatively from an excited donor molecule to an unexcited acceptor molecule when they are a certain distance from each other. One method of conducting FRET experiments is using FRET spectrometry which was previously introduced by the Raicu Lab. This method generates histograms of FRET efficiencies at pixel level called FRET spectrograms, that are fitted with models to determine the quaternary structure of protein oligomers as opposed to traditional FRET experiments which average over all FRET efficiencies. Currently, FRET spectrometry is implemented with spectrally …


Coomassie Brilliant Blue Dye As A Method For Analyzing Fracture Markings In Bone, Abigail Hoffmeister, David Harutunyan, Matthew Aizawa, Everett Baker, Brandon Mendoza, Chase Freeman, Siran Iskanian Mar 2024

Coomassie Brilliant Blue Dye As A Method For Analyzing Fracture Markings In Bone, Abigail Hoffmeister, David Harutunyan, Matthew Aizawa, Everett Baker, Brandon Mendoza, Chase Freeman, Siran Iskanian

Seaver College Research And Scholarly Achievement Symposium

Coomassie Brilliant Blue Dye is a dye commonly used to stain proteins. Because of its ability to adhere to proteins, this research has focused on perfecting a method of dyeing a fractured flat bone in order to most accurately observe and analyze fracture markings within the trabecular layer. Stereoscopic microscopy was the chosen technique of analysis for this research because of its proven effectiveness in glass and ceramic fractography to observe varying depths. In order to most effectively apply stereoscopic microscopy to this research, the following variables were manipulated to maximize color contrast in the trabecular layer in order to …


Development Of An Integrated Workflow For Nucleosome Modeling And Simulations, Ran Sun Mar 2024

Development Of An Integrated Workflow For Nucleosome Modeling And Simulations, Ran Sun

Doctoral Dissertations

Nucleosomes are the building blocks of eukaryotic genomes and thus fundamental to to all genetic processes. Any protein or drug that binds DNA must either cooperate or compete with nucleosomes. Given that a nucleosome contains 147 base pairs of DNA, there are approximately 4^147 or 10^88 possible sequences for a single nucleosome. Exhaustive studies are not possible. However, genome wide association studies can identify individual nucleosomes of interest to a specific mechanism, and today's supercomputers enable comparative simulation studies of 10s to 100s of nucleosomes. The goal of this thesis is to develop and present and end-to-end workflow that serves …


Identification Of Regulatory Elements In The Untranslated Regions Of Streptolysin S Associated Gene A Messenger Rna From Group A Streptococcus, Cameron R. Carroll, Sara G. Nibar, Alexis S. Brown, Lauren R. Angello, Gabriela C. Pérez-Alvarado, Brian M. Lee Jan 2024

Identification Of Regulatory Elements In The Untranslated Regions Of Streptolysin S Associated Gene A Messenger Rna From Group A Streptococcus, Cameron R. Carroll, Sara G. Nibar, Alexis S. Brown, Lauren R. Angello, Gabriela C. Pérez-Alvarado, Brian M. Lee

Journal of the South Carolina Academy of Science

Streptococcus pyogenes, also known as group A Streptococcus (GAS), is a human pathogen associated with a variety of diseases such as strep throat, scarlet fever, toxic shock syndrome, and necrotizing fasciitis. One of the virulence factors released by GAS during an invasive infection is a cytotoxic peptide, streptolysin S (SLS), which inhibits the immune response to necrotizing fasciitis. The streptolysin S associated gene A product, SagA, is modified to produce SLS. Thesag operon includes sagA and the genes required for enzyme-mediated post-translational modifications of SagA and the export of SLS. The sagA gene is contained within the pleiotropic …


Synthesis And Biophysical Analysis Of Modified Cell-Penetrating Peptides, Joel Mitchell Jan 2024

Synthesis And Biophysical Analysis Of Modified Cell-Penetrating Peptides, Joel Mitchell

Theses and Dissertations (Comprehensive)

Cell-penetrating peptides (CPPs) are a family of peptides that have the ability to penetrate biological membranes. They were discovered in the late 1980s and have been the topic of many studies. Much of the interest in CPPs has been due to their ability to translocate biological membranes, and the possibility that they could offer a novel drug delivery method by conjugation to biologically active molecules. Linear CPPs can be modified to form cyclic structures. This change in structure has been observed to enhance the stability and penetrative ability of the CPPs which have been studied. The current thesis focuses on …


Compliance And Roughness In Relation To Gecko Locomotion, Brooklynn Campbell Jan 2024

Compliance And Roughness In Relation To Gecko Locomotion, Brooklynn Campbell

Williams Honors College, Honors Research Projects

Geckos move efficiently through a variety of substrates, from swaying branches to wooden fences to the sides of structures. Previous studies have studied locomotion and adhesion on manmade and rough substrates; however, the work is limited when discussing locomotion and adhesion as a relationship of compliance and roughness. Ease of movement was quantified by speed, under the assumption that the faster a gecko moves, the easier it is for the gecko to cross the substrate. Gehyra oceanica geckos from Moorea, French Polynesia were tested on substrates varying in compliance and roughness with four different treatments in total. Compliance, roughness, and …


Mathematical Modeling Of Microscale Biology In Polyelectrolyte Brushes, William J. Ceely Jan 2024

Mathematical Modeling Of Microscale Biology In Polyelectrolyte Brushes, William J. Ceely

CGU Theses & Dissertations

Biological macromolecules including nucleic acids, proteins, and glycosaminoglycans are typically anionic and can span domains of up to hundreds of nanometers and even micron length scales. The structures exist in crowded environments that are dominated by multivalent electrostatic interactions that can be modeled using mean-field continuum approaches that represent underlying molecular nanoscale biophysics. In this thesis, we develop such models for polyelectrolyte brushes using both steady state modified Poisson-Boltzmann models and transient modified Poisson-Nernst-Planck models that incorporate important ion-specific (Hofmeister) effects. The transient model enables observation of the relative physical effects as an initial non-equilibrium state relaxes to the steady …


Transparent And Conductive Gallium Oxide Electrode For Simultaneous Recording And Optogenetic Stimulation, Christopher Patrick Carey Jan 2024

Transparent And Conductive Gallium Oxide Electrode For Simultaneous Recording And Optogenetic Stimulation, Christopher Patrick Carey

Graduate Theses, Dissertations, and Problem Reports

Neural electrode technology has been around for centuries since the times of Galvani. In early electrophysiology experiments metal wires were used to induce contractions in dissected animals. The metal wire electrode has since been a standard tool to both stimulate and record neural activity. In the past two decades, a new strategy for neural stimulation has been formulated based on the emergent field of optogenetics. Optogenetics refers to the use of light-sensitive proteins genetically imbedded in the membrane of a neuron to elicit neural activity. This technique offers more selectivity in the stimulation of neurons. Typical optogenetic neural electrodes, or …


Reducing Food Scarcity: The Benefits Of Urban Farming, S.A. Claudell, Emilio Mejia Dec 2023

Reducing Food Scarcity: The Benefits Of Urban Farming, S.A. Claudell, Emilio Mejia

Journal of Nonprofit Innovation

Urban farming can enhance the lives of communities and help reduce food scarcity. This paper presents a conceptual prototype of an efficient urban farming community that can be scaled for a single apartment building or an entire community across all global geoeconomics regions, including densely populated cities and rural, developing towns and communities. When deployed in coordination with smart crop choices, local farm support, and efficient transportation then the result isn’t just sustainability, but also increasing fresh produce accessibility, optimizing nutritional value, eliminating the use of ‘forever chemicals’, reducing transportation costs, and fostering global environmental benefits.

Imagine Doris, who is …


Biomolecular Function From Structural Snapshots, Roshanak Etemadpour Dec 2023

Biomolecular Function From Structural Snapshots, Roshanak Etemadpour

Theses and Dissertations

Biological molecules can assume a continuous range of conformations during function. Near equilibrium, the Boltzmann relation connects a particular conformation's free energy to the conformation's occupation probability, thus giving rise to one or more energy landscapes. Biomolecular function proceeds along minimum-energy pathways on such landscapes. Consequently, a comprehensive understanding of biomolecular function often involves the determination of the free-energy landscapes and the identification of functionally relevant minimum-energy conformational paths on these landscapes. Specific techniques are necessary to determine continuous conformational spectra and identify functionally relevant conformational trajectories from a collection of raw single-particle snapshots from, e.g. cryogenic electron microscopy (cryo-EM) …


Understanding The Kinetics Of Laser-Induced Nanowelding Of Nanoparticles And The Motility Of Bacteria When Faced With Obstacles, Ariel Rogers Dec 2023

Understanding The Kinetics Of Laser-Induced Nanowelding Of Nanoparticles And The Motility Of Bacteria When Faced With Obstacles, Ariel Rogers

Graduate Theses and Dissertations

This dissertation has two focus areas: nanoparticle nanowelding and bacteria motility in the presence of micrometer sized structures. There are two main projects for the nanoparticle nanowelding studies: “Real-time imaging of laser-induced nanowelding in solution” and “Two-color laser-induced nanostructure shape modulation.” For the real-time imaging project, I used a fluorescence microscope, a 405 nm laser, and various python packages to quantify the average size of nanowelded nanostructures as a function of time and found that the average nanostructure growth over time fit the parameters of A¯(t) ∝ c0(1−e−t/τ), where c0 represents the initial concentration of nanoparticles in the solution and …


Evaluating The Response Of Glycine Soja Accessions To Fungal Pathogen Macrophomina Phaseolina During Seedling Growth, Shirley Jacquet, Layla Rashad, Sonia Viera, Francisco Reta, Juan Reta Nov 2023

Evaluating The Response Of Glycine Soja Accessions To Fungal Pathogen Macrophomina Phaseolina During Seedling Growth, Shirley Jacquet, Layla Rashad, Sonia Viera, Francisco Reta, Juan Reta

Biological Science Student Working Papers

Charcoal rot caused by the fungal pathogen Macrophomina phaseolina (Tassi) Goid is one of various devastating soybean (Glycine max (L.) Merr.) diseases, which can severely reduce crop yield. The investigation into the genetic potential for charcoal rot resistance of wild soybean (Glycine soja) accessions will enrich our understanding of the impact of soybean domestication on disease resistance; moreover, the identified charcoal rot-resistant lines can be used to improve soybean resistance to charcoal rot. The objective of this study was to evaluate the resistance of wild soybean accessions to M. phaseolina at the seedling stage and thereby select the disease-resistant lines. …


Langevin Dynamic Models For Smfret Dynamic Shift, David Frost, Keisha Cook Dr, Hugo Sanabria Dr Nov 2023

Langevin Dynamic Models For Smfret Dynamic Shift, David Frost, Keisha Cook Dr, Hugo Sanabria Dr

Annual Symposium on Biomathematics and Ecology Education and Research

No abstract provided.


Substrate Specificity In Abc Transporters Using The E. Coli Methionine Import System, John H. Guardado Oct 2023

Substrate Specificity In Abc Transporters Using The E. Coli Methionine Import System, John H. Guardado

Featured Student Work

ATP-binding cassette (ABC) transporters use the energy of ATP to move substrates across membranes against a concentration gradient. The role of ABC transporters is crucial in several essential cellular functions and mutations in ABC transporters in humans have been linked to several conditions, including cystic fibrosis, liver disease, and diabetes. Despite their central roles in homeostasis, the mechanism of ABC transporters remains poorly understood. Our research is focused on studying an ABC importer in E. coli, as a model system, to examine the mechanism of substrate specificity and transport. The bacterial methionine import system consists of a membrane-embedded transporter, MetNI, …


Using Hyperosmotic Shock To Study The Cell Wall Of Myxococcus Xanthus, Ian Sabol Oct 2023

Using Hyperosmotic Shock To Study The Cell Wall Of Myxococcus Xanthus, Ian Sabol

Harrisburg University Research Symposium: Highlighting Research, Innovation, & Creativity

No abstract provided.


Effects Of Growth Rate On Peptidoglycan Crosslink Density Of E. Coli Using Fluorescent Labeling, Morgan Olszewski Oct 2023

Effects Of Growth Rate On Peptidoglycan Crosslink Density Of E. Coli Using Fluorescent Labeling, Morgan Olszewski

Harrisburg University Research Symposium: Highlighting Research, Innovation, & Creativity

Peptidoglycan (PG) is a polymer composed of polysaccharides and crosslinked peptide chains found in bacterial cell walls. It helps to protect the cell from environmental stress and maintain cell morphology throughout its life cycle and further generations. The PG is made up of two sugars, N-acetyl muramic acid (NAM) and N-acetyl glucosamine (NAG). NAM and NAG are connected by glycosidic linkages to form repeated chains. The chains are formed in layers, which are interconnected via a polypeptide stem linked by a peptide bridge. During cell growth, continuous turnover of existing PG occurs by severing existing crosslinks, inserting new PG into …


Biomechanical Adaptations While Performing Bilateral Drop Landings With A Unilateral Ankle Tape Application, Eric Daniel Jenkins Oct 2023

Biomechanical Adaptations While Performing Bilateral Drop Landings With A Unilateral Ankle Tape Application, Eric Daniel Jenkins

Rehabilitation Sciences Theses & Dissertations

Ankle sprains are the most common injury in sport and exercise performance, which makes the utilization of ankle taping a common procedure to both prevent potential sprain, as well as protect against reinjury. However, unilateral ankle taping may have unintended consequences on the mechanics of the ankle and other joints of both legs. The aim of this dissertation was to determine the effects of ankle taping on lower body kinetics and kinematics, stiffness, and coordination during a bilateral landing task.

Twelve female participants completed a total of 90 drop landings across two visits, randomized from landing platforms of 30, 45, …


Modeling Nonsegmented Negative-Strand Rna Virus (Nnsv) Transcription With Ejective Polymerase Collisions And Biased Diffusion, Felipe-Andres Piedra Sep 2023

Modeling Nonsegmented Negative-Strand Rna Virus (Nnsv) Transcription With Ejective Polymerase Collisions And Biased Diffusion, Felipe-Andres Piedra

Research Symposium

Background: The textbook model of NNSV transcription predicts a gene expression gradient. However, multiple studies show non-gradient gene expression patterns or data inconsistent with a simple gradient. Regarding the latter, several studies show a dramatic decrease in gene expression over the last two genes of the respiratory syncytial virus (RSV) genome (a highly studied NNSV). The textbook model cannot explain these phenomena.

Methods: Computational models of RSV and vesicular stomatitis virus (VSV – another highly studied NNSV) transcription were written in the Python programming language using the Scientific Python Development Environment. The model code is freely available on GitHub: …


Rna World And The Development Of Rna Protocells, Benjamin C. Mayfield Sep 2023

Rna World And The Development Of Rna Protocells, Benjamin C. Mayfield

PANDION: The Osprey Journal of Research and Ideas

Origins of life research, also known as pre-biotic chemistry or astrobiology, aims to unravel the mystery of the first cell’s origin on Earth. This interdisciplinary field encompasses biology, chemistry, and physics, with the primary goal of understanding the conditions necessary for life to emerge from abiotic environments. The RNA world hypothesis suggests that early life initially used RNA instead of DNA to store genomic information and for enzymatic functions. Protocells, membrane-bound entities with metabolic processes and self-replication capabilities, likely preceded the emergence of true cells. The challenges associated with RNA world is currently an active field of research. Advancements in …


Combining Simulations And Single Molecule Spectroscopy To Understand Sars-Cov-2 Nucleocapsid Protein-Rna Interactions, Jhullian Jamille Alston Sep 2023

Combining Simulations And Single Molecule Spectroscopy To Understand Sars-Cov-2 Nucleocapsid Protein-Rna Interactions, Jhullian Jamille Alston

Arts & Sciences Electronic Theses and Dissertations

Disordered protein regions play crucial roles in various cellular functions, exhibiting high heterogeneity and sampling an ensemble of conformations distinct from folded domains. However, our understanding of their behavior and contributions to protein-protein and protein-nucleic acid interactions remains limited. This dissertation focuses on investigating the interactions between disordered regions and RNA, as well as folded regions of proteins, utilizing computational modeling and single-molecule fluorescence spectroscopy. The SARS-CoV-2 Nucleocapsid (N) protein serves as a model system to address broader questions concerning disordered protein behavior and N protein-mediated RNA genome packaging. I employed coarse-grained molecular dynamic simulations to characterize the cooperative binding …