Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering

Old Dominion University

Cell death

Articles 1 - 6 of 6

Full-Text Articles in Life Sciences

Synergistic Effects Of Nanosecond Pulsed Plasma And Electric Field On Inactivation Of Pancreatic Cancer Cells In Vitro, Edwin A. Oshin, Zobia Minhas, Ruben M. L. Colunga Biancatelli, John D. Catravas, Richard Heller, Siqi Guo, Chunqi Jiang Jan 2024

Synergistic Effects Of Nanosecond Pulsed Plasma And Electric Field On Inactivation Of Pancreatic Cancer Cells In Vitro, Edwin A. Oshin, Zobia Minhas, Ruben M. L. Colunga Biancatelli, John D. Catravas, Richard Heller, Siqi Guo, Chunqi Jiang

Bioelectrics Publications

Nanosecond pulsed atmospheric pressure plasma jets (ns-APPJs) produce reactive plasma species, including charged particles and reactive oxygen and nitrogen species (RONS), which can induce oxidative stress in biological cells. Nanosecond pulsed electric field (nsPEF) has also been found to cause permeabilization of cell membranes and induce apoptosis or cell death. Combining the treatment of ns-APPJ and nsPEF may enhance the effectiveness of cancer cell inactivation with only moderate doses of both treatments. Employing ns-APPJ powered by 9 kV, 200 ns pulses at 2 kHz and 60-nsPEF of 50 kV/cm at 1 Hz, the synergistic effects on pancreatic cancer cells (Pan02) …


Electroporation And Cell Killing By Milli- To Nanosecond Pulses And Avoiding Neuromuscular Stimulation In Cancer Ablation, Emily Gudvangen, Vitalii Kim, Vitalij Novickij, Federico Battista, Andrei G. Pakhomov Jan 2022

Electroporation And Cell Killing By Milli- To Nanosecond Pulses And Avoiding Neuromuscular Stimulation In Cancer Ablation, Emily Gudvangen, Vitalii Kim, Vitalij Novickij, Federico Battista, Andrei G. Pakhomov

Bioelectrics Publications

Ablation therapies aim at eradication of tumors with minimal impact on surrounding healthy tissues. Conventional pulsed electric field (PEF) treatments cause pain and muscle contractions far beyond the ablation area. The ongoing quest is to identify PEF parameters efficient at ablation but not at stimulation. We measured electroporation and cell killing thresholds for 150 ns–1 ms PEF, uni- and bipolar, delivered in 10- to 300-pulse trains at up to 1 MHz rates. Monolayers of murine colon carcinoma cells exposed to PEF were stained with YO-PRO-1 dye to detect electroporation. In 2–4 h, dead cells were labeled with propidium. Electroporation and …


Nanopulse Stimulation (Nps) Induces Tumor Ablation And Immunity In Orthotopic 4t1 Mouse Breast Cancer: A Review, Stephen J. Beebe, Brittany P. Lassiter, Siqi Guo Jan 2018

Nanopulse Stimulation (Nps) Induces Tumor Ablation And Immunity In Orthotopic 4t1 Mouse Breast Cancer: A Review, Stephen J. Beebe, Brittany P. Lassiter, Siqi Guo

Bioelectrics Publications

Nanopulse Stimulation (NPS) eliminates mouse and rat tumor types in several different animal models. NPS induces protective, vaccine-like effects after ablation of orthotopic rat N1-S1 hepatocellular carcinoma. Here we review some general concepts of NPS in the context of studies with mouse metastatic 4T1 mammary cancer showing that the postablation, vaccine-like effect is initiated by dynamic, multilayered immune mechanisms. NPS eliminates primary 4T1 tumors by inducing immunogenic, caspase-independent programmed cell death (PCD). With lower electric fields, like those peripheral to the primary treatment zone, NPS can activate dendritic cells (DCs). The activation of DCs by dead/dying cells leads to increases …


Induction Of Cell Death Mechanisms And Apoptosis By Nanosecond Pulsed Electric Fields (Nspefs), Stephen J. Beebe, Nova M. Sain, Wei Ren Jan 2013

Induction Of Cell Death Mechanisms And Apoptosis By Nanosecond Pulsed Electric Fields (Nspefs), Stephen J. Beebe, Nova M. Sain, Wei Ren

Bioelectrics Publications

Pulse power technology using nanosecond pulsed electric fields (nsPEFs) offers a new stimulus to modulate cell functions or induce cell death for cancer cell ablation. New data and a literature review demonstrate fundamental and basic cellular mechanisms when nsPEFs interact with cellular targets. NsPEFs supra-electroporate cells creating large numbers of nanopores in all cell membranes. While nsPEFs have multiple cellular targets, these studies show that nsPEF-induced dissipation of DeltaPsim closely parallels deterioration in cell viability. Increases in intracellular Ca2+ alone were not sufficient for cell death; however, cell death depended of the presence of Ca2+. When both events occur, cell …


Nanosecond Pulse Electrical Fields Used In Conjunction With Multi-Wall Carbon Nanotubes As A Potential Tumor Treatment, Michael W. Stacey, Christopher Osgood, Bhargava Subhash Kalluri, Wei Cao, Hani Elsayed-Ali, Tarek Abdel-Fattah Jan 2011

Nanosecond Pulse Electrical Fields Used In Conjunction With Multi-Wall Carbon Nanotubes As A Potential Tumor Treatment, Michael W. Stacey, Christopher Osgood, Bhargava Subhash Kalluri, Wei Cao, Hani Elsayed-Ali, Tarek Abdel-Fattah

Bioelectrics Publications

The objectives of this communication were to fabricate pure samples of multi-walled carbon nanotubes (MWCNTs) and to determine their toxicity in tumor cell lines. MWCNTs were dispersed in a concentration of the surfactant T80 that was minimally toxic. Cell-type variation in toxicity to MWCNTs was observed but was not significantly different to unexposed controls. Additionally, we investigated the increased cell killing of the pancreatic cancer cell line PANC1 when exposed to ultrashort (nanosecond) pulsed electrical fields (nsPEF) in the presence of MWCNTs as a potential form of cancer therapy. We hypothesized that the unique electronic properties of MWCNTs disrupt cell …


Stochastic Calculations For Computation Of Radiation Effects And Cell Survivability Under Voltage Pulsing, Madhuri Ganapathiraju Apr 2008

Stochastic Calculations For Computation Of Radiation Effects And Cell Survivability Under Voltage Pulsing, Madhuri Ganapathiraju

Electrical & Computer Engineering Theses & Dissertations

Statistical computations are an important tool for the analysis of stochastic phenomena and processes that are characterized by variability. Biological systems (e.g., cells, tissues etc.) are perfect examples wherein response to a given external stimulus can be varied and needs to be adequately considered. The Monte Carlo method of analysis has now been recognized as the most effective way of treating stochastic variability.

This thesis uses Monte Carlo based simulations to probe two problems that require the quantification and modeling of effects caused by energy deposition onto biological matter from external sources. One problem involves the probabilistic study of the …