Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Biology

Genome

Biology Faculty Publications

2013

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Salamander Hox Clusters Contain Repetitive Dna And Expanded Non-Coding Regions: A Typical Hox Structure For Non-Mammalian Tetrapod Vertebrates?, Stephen Randal Voss, Srikrishna Putta, John A. Walker, Jeramiah J. Smith, Nobuyasu Maki, Panagiotis A. Tsonis Apr 2013

Salamander Hox Clusters Contain Repetitive Dna And Expanded Non-Coding Regions: A Typical Hox Structure For Non-Mammalian Tetrapod Vertebrates?, Stephen Randal Voss, Srikrishna Putta, John A. Walker, Jeramiah J. Smith, Nobuyasu Maki, Panagiotis A. Tsonis

Biology Faculty Publications

Hox genes encode transcription factors that regulate embryonic and post-embryonic developmental processes. The expression of Hox genes is regulated in part by the tight, spatial arrangement of conserved coding and non-coding sequences. The potential for evolutionary changes in Hox cluster structure is thought to be low among vertebrates; however, recent studies of a few non-mammalian taxa suggest greater variation than originally thought. Using next generation sequencing of large genomic fragments (>100 kb) from the red spotted newt (Notophthalamus viridescens), we found that the arrangement of Hox cluster genes was conserved relative to orthologous regions from other vertebrates, but the …


Salamander Hox Clusters Contain Repetitive Dna And Expanded Non-Coding Regions: A Typical Hox Structure For Non-Mammalian Tetrapod Vertebrates?, Stephen Randal Voss, Srikrishna Putta, John A. Walker, Jeremiah J. Smith, Nobuyasu Maki, Panagiotis A. Tsonis Jan 2013

Salamander Hox Clusters Contain Repetitive Dna And Expanded Non-Coding Regions: A Typical Hox Structure For Non-Mammalian Tetrapod Vertebrates?, Stephen Randal Voss, Srikrishna Putta, John A. Walker, Jeremiah J. Smith, Nobuyasu Maki, Panagiotis A. Tsonis

Biology Faculty Publications

Hox genes encode transcription factors that regulate embryonic and post-embryonic developmental processes. The expression of Hox genes is regulated in part by the tight, spatial arrangement of conserved coding and non-coding sequences. The potential for evolutionary changes in Hox cluster structure is thought to be low among vertebrates; however, recent studies of a few non-mammalian taxa suggest greater variation than originally thought. Using next generation sequencing of large genomic fragments (>100 kb) from the red spotted newt (Notophthalamus viridescens), we found that the arrangement of Hox cluster genes was conserved relative to orthologous regions from other vertebrates, but the …