Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Life Sciences

Are Immune Modulating Single Nucleotide Polymorphisms Associated With Necrotizing Enterocolitis?, Ashanti L Franklin, Mariam Said, Clint D Cappiello, Heather Gordish-Dressman, Zohreh Tatari-Calderone, Stanislav Vukmanovic, Khodayar Rais-Bahrami, Naomi L C Luban, Joseph M Devaney, Anthony D Sandler Dec 2015

Are Immune Modulating Single Nucleotide Polymorphisms Associated With Necrotizing Enterocolitis?, Ashanti L Franklin, Mariam Said, Clint D Cappiello, Heather Gordish-Dressman, Zohreh Tatari-Calderone, Stanislav Vukmanovic, Khodayar Rais-Bahrami, Naomi L C Luban, Joseph M Devaney, Anthony D Sandler

Genomics and Precision Medicine Faculty Publications

Necrotizing enterocolitis (NEC) is a devastating gastrointestinal emergency. The purpose of this study is to determine if functional single nucleotide polymorphisms (SNPs) in immune-modulating genes pre-dispose infants to NEC. After Institutional Review Board approval and parental consent, buccal swabs were collected for DNA extraction. TaqMan allelic discrimination assays and BglII endonuclease digestion were used to genotype specific inflammatory cytokines and TRIM21. Statistical analysis was completed using logistic regression. 184 neonates were analyzed in the study. Caucasian neonates with IL-6 (rs1800795) were over 6 times more likely to have NEC (p = 0.013; OR = 6.61, 95% CI 1.48-29.39), and over …


Age-Associated Methylation Suppresses Spry1, Leading To A Failure Of Re-Quiescence And Loss Of The Reserve Stem Cell Pool In Elderly Muscle., Anne Bigot, William J Duddy, Zamalou G Ouandaogo, Elisa Negroni, Virginie Mariot, Svetlana Ghimbovschi, Brennan Harmon, Aurore Wielgosik, Camille Loiseau, Joseph Devaney, Julie Dumonceaux, Gillian Butler-Browne, Vincent Mouly, Stéphanie Duguez Nov 2015

Age-Associated Methylation Suppresses Spry1, Leading To A Failure Of Re-Quiescence And Loss Of The Reserve Stem Cell Pool In Elderly Muscle., Anne Bigot, William J Duddy, Zamalou G Ouandaogo, Elisa Negroni, Virginie Mariot, Svetlana Ghimbovschi, Brennan Harmon, Aurore Wielgosik, Camille Loiseau, Joseph Devaney, Julie Dumonceaux, Gillian Butler-Browne, Vincent Mouly, Stéphanie Duguez

Genomics and Precision Medicine Faculty Publications

The molecular mechanisms by which aging affects stem cell number and function are poorly understood. Murine data have implicated cellular senescence in the loss of muscle stem cells with aging. Here, using human cells and by carrying out experiments within a strictly pre-senescent division count, we demonstrate an impaired capacity for stem cell self-renewal in elderly muscle. We link aging to an increased methylation of the SPRY1 gene, a known regulator of muscle stem cell quiescence. Replenishment of the reserve cell pool was modulated experimentally by demethylation or siRNA knockdown of SPRY1. We propose that suppression of SPRY1 by age-associated …


Delivery Of Nucleic Acids And Nanomaterials By Cell-Penetrating Peptides: Opportunities And Challenges, Yue-Wern Huang, Han-Jung Lee, Larry Tolliver, Robert Aronstam Sep 2015

Delivery Of Nucleic Acids And Nanomaterials By Cell-Penetrating Peptides: Opportunities And Challenges, Yue-Wern Huang, Han-Jung Lee, Larry Tolliver, Robert Aronstam

Biological Sciences Faculty Research & Creative Works

Many viral and nonviral systems have been developed to aid delivery of biologically active molecules into cells. Among these, cell-penetrating peptides (CPPs) have received increasing attention in the past two decades for biomedical applications. In this review, we focus on opportunities and challenges associated with CPP delivery of nucleic acids and nanomaterials. We first describe the nature of versatile CPPs and their interactions with various types of cargoes. We then discuss in vivo and in vitro delivery of nucleic acids and nanomaterials by CPPs. Studies on the mechanisms of cellular entry and limitations in the methods used are detailed.


A Mitochondria-Anchored Isoform Of The Actin-Nucleating Spire Protein Regulates Mitochondrial Division, Uri Manor, Sadie Bartholomew, Gonen Golani, Eric Christenson, Michael Kozlov, Henry Higgs, James Spudich, Jennifer Lippincott-Schwartz Aug 2015

A Mitochondria-Anchored Isoform Of The Actin-Nucleating Spire Protein Regulates Mitochondrial Division, Uri Manor, Sadie Bartholomew, Gonen Golani, Eric Christenson, Michael Kozlov, Henry Higgs, James Spudich, Jennifer Lippincott-Schwartz

Dartmouth Scholarship

Mitochondrial division, essential for survival in mammals, is enhanced by an inter-organellar process involving ER tubules encircling and constricting mitochondria. The force for constriction is thought to involve actin polymerization by the ER-anchored isoform of the formin protein inverted formin 2 (INF2). Unknown is the mechanism triggering INF2-mediated actin polymerization at ER-mitochondria intersections. We show that a novel isoform of the formin-binding, actin-nucleating protein Spire, Spire1C, localizes to mitochondria and directly links mitochondria to the actin cytoskeleton and the ER. Spire1C binds INF2 and promotes actin assembly on mitochondrial surfaces. Disrupting either Spire1C actin- or formin-binding activities reduces mitochondrial constriction …


The Sea Lamprey Meiotic Map Improves Resolution Of Ancient Vertebrate Genome Duplications, Jeramiah James Smith, Melissa C. Keinath Aug 2015

The Sea Lamprey Meiotic Map Improves Resolution Of Ancient Vertebrate Genome Duplications, Jeramiah James Smith, Melissa C. Keinath

Biology Faculty Publications

It is generally accepted that many genes present in vertebrate genomes owe their origin to two whole-genome duplications that occurred deep in the ancestry of the vertebrate lineage. However, details regarding the timing and outcome of these duplications are not well resolved. We present high-density meiotic and comparative genomic maps for the sea lamprey (Petromyzon marinus), a representative of an ancient lineage that diverged from all other vertebrates ~550 million years ago. Linkage analyses yielded a total of 95 linkage groups, similar to the estimated number of germline chromosomes (1n ~ 99), spanning a total of 5570.25 cM. …


Spatial Heterogeneity, Host Movement And Mosquito-Borne Disease Transmission, Miguel A. Acevedo, Olivia Prosper, Kenneth Lopiano, Nick Ruktanonchai, T. Trevor Caughlin, Maia Martcheva, Craig W. Osenberg, David L. Smith Jun 2015

Spatial Heterogeneity, Host Movement And Mosquito-Borne Disease Transmission, Miguel A. Acevedo, Olivia Prosper, Kenneth Lopiano, Nick Ruktanonchai, T. Trevor Caughlin, Maia Martcheva, Craig W. Osenberg, David L. Smith

Dartmouth Scholarship

Mosquito-borne diseases are a global health priority disproportionately affecting low-income populations in tropical and sub-tropical countries. These pathogens live in mosquitoes and hosts that interact in spatially heterogeneous environments where hosts move between regions of varying transmission intensity. Although there is increasing interest in the implications of spatial processes for mosquito-borne disease dynamics, most of our understanding derives from models that assume spatially homogeneous transmission. Spatial variation in contact rates can influence transmission and the risk of epidemics, yet the interaction between spatial heterogeneity and movement of hosts remains relatively unexplored. Here we explore, analytically and through numerical simulations, how …


Cytoskeletal Dynamics: A View From The Membrane, Magdalena Bezanilla, Amy S. Gladfelter, David R. Kovar, Wei-Lih Lee May 2015

Cytoskeletal Dynamics: A View From The Membrane, Magdalena Bezanilla, Amy S. Gladfelter, David R. Kovar, Wei-Lih Lee

Dartmouth Scholarship

Many aspects of cytoskeletal assembly and dynamics can be recapitulated in vitro; yet, how the cytoskeleton integrates signals in vivo across cellular membranes is far less understood. Recent work has demonstrated that the membrane alone, or through membrane-associated proteins, can effect dynamic changes to the cytoskeleton, thereby impacting cell physiology. Having identified mechanistic links between membranes and the actin, microtubule, and septin cytoskeletons, these studies highlight the membrane’s central role in coordinating these cytoskeletal systems to carry out essential processes, such as endocytosis, spindle positioning, and cellular compartmentalization.


Targeted Single Molecule Sequencing Methodology For Ovarian Hyperstimulation Syndrome., Funda Orkunoglu-Suer, Arthur F. Harralson, David Frankfurter, Paul Gindoff, Travis J. O'Brien Apr 2015

Targeted Single Molecule Sequencing Methodology For Ovarian Hyperstimulation Syndrome., Funda Orkunoglu-Suer, Arthur F. Harralson, David Frankfurter, Paul Gindoff, Travis J. O'Brien

Genomics and Precision Medicine Faculty Publications

BACKGROUND: One of the most significant issues surrounding next generation sequencing is the cost and the difficulty assembling short read lengths. Targeted capture enrichment of longer fragments using single molecule sequencing (SMS) is expected to improve both sequence assembly and base-call accuracy but, at present, there are very few examples of successful application of these technologic advances in translational research and clinical testing. We developed a targeted single molecule sequencing (T-SMS) panel for genes implicated in ovarian response to controlled ovarian hyperstimulation (COH) for infertility.

RESULTS: Target enrichment was carried out using droplet-base multiplex polymerase chain reaction (PCR) technology (RainDance®) …


An Approach For Determining And Measuring Network Hierarchy Applied To Comparing The Phosphorylome And The Regulome, Chao Cheng, Erik Andrews, Koon-Kiu Yan, Matthew Ung, Daifeng Wang, Mark Gerstein Mar 2015

An Approach For Determining And Measuring Network Hierarchy Applied To Comparing The Phosphorylome And The Regulome, Chao Cheng, Erik Andrews, Koon-Kiu Yan, Matthew Ung, Daifeng Wang, Mark Gerstein

Dartmouth Scholarship

Many biological networks naturally form a hierarchy with a preponderance of downward information flow. In this study, we define a score to quantify the degree of hierarchy in a network and develop a simulated-annealing algorithm to maximize the hierarchical score globally over a network. We apply our algorithm to determine the hierarchical structure of the phosphorylome in detail and investigate the correlation between its hierarchy and kinase properties. We also compare it to the regulatory network, finding that the phosphorylome is more hierarchical than the regulome.


Finding Our Way Through Phenotypes, Andrew R. Deans, Suzanna E. Lewis, Eva Huala, Salvatore S. Anzaldo, Michael Ashburner, James P. Balhoff, David C. Blackburn, Judith A. Blake, J. Gordon Burleigh, Bruno Chanet, Laurel D. Cooper, Mélanie Courtot, Sándor Csösz, Hong Cui, Wasila Dahdul, Sandip Das, T. Alexander Dececchi, Agnes Dettai, Rui Diogo, Robert E. Druzinsky, Michel Dumontier, Nico M. Franz, Frank Friedrich, George V. Gkoutos, Melissa Haendel, Luke J. Harmon, Terry F Hayamizu, Yongqun He, Heather M. Hines, Nizar Ibrahim, Laura M. Jackson, Pankaj Jaiswal, Christina James-Zorn, Sebastian Köhler, Guillaume Lecointre, Hilmar Lapp, Carolyn J. Lawrence, Nicolas Le Novère, John G. Lundberg, James Macklin, Austin R. Mast, Peter E. Midford, István Mikó, Christopher J. Mungall, Anika Oellrich, David Osumi-Sutherland, Helen Parkinson, Martín J. Ramírez, Stefan Richter, Peter N. Robinson, Alan Ruttenberg, Katja S. Schulz, Erik Segerdell, Katja C. Seltmann, Michael Sharkey, Aaron D. Smith, Barry Smith, Chelsea D. Specht, R. Burke Squires, Robert W. Thacker, Anne Thessen, Jose Fernandez-Triana, Mauno Vihinen, Peter D. Vize, Lars Vogt, Christine E. Wall, Ramona L. Walls, Monte Westerfeld, Robert A. Wharton, Christian S. Wirkner, James B. Woolley, Matthew J. Yoder, Aaron M. Zorn, Paula Mabee Jan 2015

Finding Our Way Through Phenotypes, Andrew R. Deans, Suzanna E. Lewis, Eva Huala, Salvatore S. Anzaldo, Michael Ashburner, James P. Balhoff, David C. Blackburn, Judith A. Blake, J. Gordon Burleigh, Bruno Chanet, Laurel D. Cooper, Mélanie Courtot, Sándor Csösz, Hong Cui, Wasila Dahdul, Sandip Das, T. Alexander Dececchi, Agnes Dettai, Rui Diogo, Robert E. Druzinsky, Michel Dumontier, Nico M. Franz, Frank Friedrich, George V. Gkoutos, Melissa Haendel, Luke J. Harmon, Terry F Hayamizu, Yongqun He, Heather M. Hines, Nizar Ibrahim, Laura M. Jackson, Pankaj Jaiswal, Christina James-Zorn, Sebastian Köhler, Guillaume Lecointre, Hilmar Lapp, Carolyn J. Lawrence, Nicolas Le Novère, John G. Lundberg, James Macklin, Austin R. Mast, Peter E. Midford, István Mikó, Christopher J. Mungall, Anika Oellrich, David Osumi-Sutherland, Helen Parkinson, Martín J. Ramírez, Stefan Richter, Peter N. Robinson, Alan Ruttenberg, Katja S. Schulz, Erik Segerdell, Katja C. Seltmann, Michael Sharkey, Aaron D. Smith, Barry Smith, Chelsea D. Specht, R. Burke Squires, Robert W. Thacker, Anne Thessen, Jose Fernandez-Triana, Mauno Vihinen, Peter D. Vize, Lars Vogt, Christine E. Wall, Ramona L. Walls, Monte Westerfeld, Robert A. Wharton, Christian S. Wirkner, James B. Woolley, Matthew J. Yoder, Aaron M. Zorn, Paula Mabee

Entomology Faculty Publications

Despite a large and multifaceted effort to understand the vast landscape of phenotypic data, their current form inhibits productive data analysis. The lack of a community-wide, consensus-based, human- and machine-interpretable language for describing phenotypes and their genomic and environmental contexts is perhaps the most pressing scientific bottleneck to integration across many key fields in biology, including genomics, systems biology, development, medicine, evolution, ecology, and systematics. Here we survey the current phenomics landscape, including data resources and handling, and the progress that has been made to accurately capture relevant data descriptions for phenotypes. We present an example of the kind of …


Genetic Modifiers Of Duchenne Muscular Dystrophy And Dilated Cardiomyopathy., Andrea Barp, Luca Bello, Luisa Politano, Paola Melacini, Chiara Calore, Eric P. Hoffman, +16 Additional Authors Jan 2015

Genetic Modifiers Of Duchenne Muscular Dystrophy And Dilated Cardiomyopathy., Andrea Barp, Luca Bello, Luisa Politano, Paola Melacini, Chiara Calore, Eric P. Hoffman, +16 Additional Authors

Genomics and Precision Medicine Faculty Publications

OBJECTIVE: Dilated cardiomyopathy (DCM) is a major complication and leading cause of death in Duchenne muscular dystrophy (DMD). DCM onset is variable, suggesting modifier effects of genetic or environmental factors. We aimed to determine if polymorphisms previously associated with age at loss of independent ambulation (LoA) in DMD (rs28357094 in the SPP1 promoter, rs10880 and the VTTT/IAAM haplotype in LTBP4) also modify DCM onset.

METHODS: A multicentric cohort of 178 DMD patients was genotyped by TaqMan assays. We performed a time-to-event analysis of DCM onset, with age as time variable, and finding of left ventricular ejection fraction < 50% and/or end diastolic volume > 70 mL/m2 as …