Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Biology

Wayne State University

Drosophila

Articles 1 - 8 of 8

Full-Text Articles in Life Sciences

The Importance Of Protein Context In Spinocerebellar Ataxia Type 3, Sean Luis Johnson Jan 2022

The Importance Of Protein Context In Spinocerebellar Ataxia Type 3, Sean Luis Johnson

Wayne State University Dissertations

Spinocerebellar Ataxia Type 3 (SCA3) is a member of the family of polyglutamine (polyQ) neurodegenerative disorders that includes Huntington's Disease and several other SCAs. SCA3, the most common dominant ataxia in the world, is caused by polyQ tract expansion in the protein, ataxin-3. How SCA3 occurs and how to treat it remain unresolved issues. The primary culprit of toxicity in all polyQ diseases is the glutamine repeat: its abnormal expansion leads to neuronal dysfunction and death. With that said, there is indisputable evidence that the way polyQ-dependent toxicity presents—areas impacted, cellular processes perturbed—is predicated in large part on regions outside …


An Analysis Of The Interaction Between Sin3 And Methionine Metabolism In Drosophila, Mengying Liu Jan 2016

An Analysis Of The Interaction Between Sin3 And Methionine Metabolism In Drosophila, Mengying Liu

Wayne State University Dissertations

Chromatin modification and cellular metabolism are tightly connected. The mechanism for this cross-talk, however, remains incompletely understood. SIN3 controls histone acetylation through association with the histone deacetylase RPD3. In this study, my major goal is to explore the mechanism of how SIN3 regulates cellular metabolism.

Methionine metabolism generates the major methyl donor S-adenosylmethionine (SAM) for histone methylation. In collaboration with others, I report that reduced levels of some enzymes involved in methionine metabolism and histone demethylases lead to lethality, as well as wing development and cell proliferation defects in Drosophila melanogaster. Additionally, disruption of methionine metabolism can directly affect histone …


A Novel Role For Repetitive Sequences In Recognition Of The Drosophila Melanogaster X Chromosome, Sonal Suresh Joshi Jan 2016

A Novel Role For Repetitive Sequences In Recognition Of The Drosophila Melanogaster X Chromosome, Sonal Suresh Joshi

Wayne State University Dissertations

In humans and fruit flies, males have one X chromosome while females have two. This imbalance in gene dosage is potentially lethal, and the process of dosage compensation corrects it. The MSL (Male Specific Lethal) complex, which is composed of five proteins and one of two functionally redundant long non-coding roX (RNA on the X) RNAs, brings about dosage compensation in Drosophila melanogaster. In fruit fly dosage compensation, all the genes on the single male X chromosome are upregulated approximately twofold, via chromatin modifications, to equalize gene dosage with the two X chromosomes of females. This process calls for highly …


Analyzing The Interactions Of Kdm5/Lid And Sin3 In Drosophila Melanogaster, Ambikai Gajan Jan 2015

Analyzing The Interactions Of Kdm5/Lid And Sin3 In Drosophila Melanogaster, Ambikai Gajan

Wayne State University Dissertations

SIN3, the scaffold protein of a histone modifying complex is conserved from yeast to mammals. Drosophila SIN3 associates with both a histone deactylase RPD3 and a histone demethylase dKDM5/LID. Immunopurification of dKDM5/LID verifies a previously observed interaction with SIN3 and RPD3. Furthermore, deficiency of dKDM5/LID phenocopies deficiency of SIN3 in many cellular and developmental processes. Knockdown of both Sin3A and lid hinder cell proliferation in Drosophila cultured cells and developing flies. Knockdown of these genes also results in a curved wing phenotype implicating a role in wing development. Analysis of underlying gene expression changes upon decreased expression of SIN3, dKDM5/LID …


Drosophila Cyclin J And The Somatic Pirna Pathway Cooperate To Regulate Germline Stem Cells, Paul Michael Albosta Jan 2015

Drosophila Cyclin J And The Somatic Pirna Pathway Cooperate To Regulate Germline Stem Cells, Paul Michael Albosta

Wayne State University Dissertations

Cyclin J (CycJ) is a highly conserved cyclin that is uniquely expressed specifically in ovaries in Drosophila. Deletion of the genomic region containing CycJ and adjacent genes resulted in a genetic interaction with neighboring piRNA pathway gene, armitage (armi). Here I assessed oogenesis in CycJ null in the presence or absence of mutations in armi or other piRNA pathway genes. Although CycJ null flies had decreased egg laying and hatching rates, ovaries appeared normal indicating that CycJ is dispensable for oogenesis under normal conditions. Further double mutant analysis of CycJ and neighbor armi, as well as two other piRNA pathway …


A Protective Role Of Autophagy In A Drosophila Model Of Friedreich's Ataxia (Frda), Luan Wang Jan 2015

A Protective Role Of Autophagy In A Drosophila Model Of Friedreich's Ataxia (Frda), Luan Wang

Wayne State University Dissertations

Friedreich’s ataxia (FRDA) is an inherited autosomal recessive neurodegenerative disease. It affects 1 in every 50,000 people in central Europe and North America. FRDA is caused by deficiency of Frataxin, an essential mitochondrial iron chaperone protein, and the associated oxidative stress damages. Autophagy, a housekeeping process responsible for the bulk degradation and turnover of long half-life proteins and organelles, is featured by the formation of double-membrane vacuoles and lysosomal degradation. Previous researches indicate that Danon’s disease, the inherited neural disorder disease that shares similar symptoms with FRDA, is due to the malfunction of autophagy. Based on this, we raise the …


Sex And Heterochromatin: An Investigation Of Sexual Dimorphism In Drosophila Melanogaster, Manasi S. Apte Jan 2014

Sex And Heterochromatin: An Investigation Of Sexual Dimorphism In Drosophila Melanogaster, Manasi S. Apte

Wayne State University Dissertations

Over 30% of Drosophila genome is assembled into heterochromatin. Heterochromatin is relatively gene poor, transcriptionally less active and remains condensed during interphase. Previous studies established that roX RNA and some of the Male Specific Lethal (MSL) proteins, all components of the dosage compensation complex, are required for full expression of autosomal heterochromatic genes in male flies but not in females. This was surprising since heterochromatin is generally not thought to be sexually dimorphic. The genetic basis for the regulation of sex-specific heterochromatin was completely unknown.

To determine if roX RNAs localize directly at the heterochromatic regions that they regulate, I …


Characterizing Cyclin J By Identifying Conserved Protein-Protein Interactions, Phillip Jacob Selman Jan 2013

Characterizing Cyclin J By Identifying Conserved Protein-Protein Interactions, Phillip Jacob Selman

Wayne State University Theses

Cyclins are proteins that bind to Cyclin-dependent kinases, or Cdks, through a conserved domain called the Cyclin Box. Many Cyclins regulate the cell cycle. A few Cyclins impact cellular processes outside of the cell cycle. Also, a few Cyclins have poorly understood functions.

Cyclin J is a member of the Cyclin superfamily of proteins. Cyclin J is conserved among all metazoans, but is presently not well understood. All the research done on Cyclin J has been done in Drosophila.

Its mRNA is present in the early embryo, then disappears, only to reappear in adult females. When probing protein extracts with …