Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Biology

University of Louisville

Mitochondrial Physiology

Publication Year

Articles 1 - 4 of 4

Full-Text Articles in Life Sciences

Tradeoffs Of Warm Adaptation In Aquatic Ectotherms: Live Fast, Die Young?, A. P. Porreca, E. Martinez, R. E. Colombo, Michael A. Menze Aug 2015

Tradeoffs Of Warm Adaptation In Aquatic Ectotherms: Live Fast, Die Young?, A. P. Porreca, E. Martinez, R. E. Colombo, Michael A. Menze

Michael Menze

In the face of a changing climate, questions regarding sub-lethal effects of elevated habitat temperature on the physiology of ectotherms remain unanswered. In particular, long-term responses of ectotherms to the warming trend in tropical regions are unknown and significantly understudied due primarily to the difficulties in specimen and community traceability. In freshwater lakes employed as cooling reservoirs for power plants, increased physiological stress from high water temperature can lead to an increase in mortality, reduce growth, and potentially alter the community structure of fishes. Throughout this study, we employ this highly tractable system to assess how elevated thermal regimes can …


Physiological Performance Of Warm-Adapted Marine Ectotherms: Thermal Limits Of Mitochondrial Energy Transduction Efficiency, Eloy Martinez, Eric Hendricks, Michael A. Menze, Joseph J. Torres Aug 2015

Physiological Performance Of Warm-Adapted Marine Ectotherms: Thermal Limits Of Mitochondrial Energy Transduction Efficiency, Eloy Martinez, Eric Hendricks, Michael A. Menze, Joseph J. Torres

Michael Menze

Thermal regimes in aquatic systems have profound implications for the physiology of ectotherms. In particular, the effect of elevated temperatures on mitochondrial energy transduction (i.e. energy from carbon substrates to ATP) in tropical and subtropical teleosts may have profound consequences on organismal performance and population viability. Upper and lower whole-organism critical temperatures for teleosts suggest that subtropical and tropical species are not susceptible to the warming trends associated with climate change, but sub-lethal effects on energy transduction efficiency and population dynamics remain unclear. The goal of the present study was to compare the thermal sensitivity of processes associated with mitochondrial …


Identification Of Disufide Bond Formation Between Mitoneet And Glutamate Dehydrogenase 1, Morgan E. Roberts, Jacquelyn P. Crail, Megan M. Laffoon, William G. Fernandez, Michael A. Menze, Mary E. Konkle Dec 2013

Identification Of Disufide Bond Formation Between Mitoneet And Glutamate Dehydrogenase 1, Morgan E. Roberts, Jacquelyn P. Crail, Megan M. Laffoon, William G. Fernandez, Michael A. Menze, Mary E. Konkle

Michael Menze

MitoNEET is a protein that was identified as a drug target for diabetes, but its cellular function as well as its role in diabetes remains elusive. Protein pull-down experiments identified glutamate dehydrogenase 1 (GDH1) as a potential binding partner. GDH1 is a key metabolic enzyme with emerging roles in insulin regulation. MitoNEET forms a covalent complex with GDH1 through disulfide bond formation and acts as an activator. Proteomic analysis identified the specific cysteine residues that participate in the disulfide bond. This is the first report that effectively links mitoNEET to activation of the insulin regulator GDH1.


Improved Tolerance To Salt And Water Stress In Drosophila Melanogaster Cells Conferred By Late Embryogenesis Abundant Protein, Matthew R. Marunde, Dilini A. Samarajeewa, John Anderson, Shumin Li, Steven C. Hand, Michael A. Menze Apr 2013

Improved Tolerance To Salt And Water Stress In Drosophila Melanogaster Cells Conferred By Late Embryogenesis Abundant Protein, Matthew R. Marunde, Dilini A. Samarajeewa, John Anderson, Shumin Li, Steven C. Hand, Michael A. Menze

Michael Menze

Mechanisms that govern anhydrobiosis involve the accumulation of highly hydrophilic macromolecules, such as late embryogenesis abundant (LEA) proteins. Group 1 LEA proteins comprised of 181 (AfLEA1.1) and 197 (AfLEA1.3) amino acids were cloned from embryos of Artemia franciscana and expressed in Drosophila melanogaster cells (Kc167). Confocal microscopy revealed a construct composed of green fluorescence protein (GFP) and AfLEA1.3 accumulates in the mitochondria (AfLEA1.3-GFP), while AfLEA1.1-GFP was found in the cytoplasm. In the presence of mixed substrates, oxygen consumption was statistically identical for permeabilized Kc167 control and Kc167-AfLEA1.3 cells. Acute titrations of permeabilized cells with NaCl up to 500 mM led …