Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Life Sciences

Tgf-B Signaling Mechanisms In Caenorhabditis Elegans Response To Bacterial Pathogens, Emma J. Ciccarelli Feb 2023

Tgf-B Signaling Mechanisms In Caenorhabditis Elegans Response To Bacterial Pathogens, Emma J. Ciccarelli

Dissertations, Theses, and Capstone Projects

When exposed to infection, the nematode C. elegans mounts an innate immune response through secretion of antimicrobial peptides (AMPs). Different signaling pathways in the worm regulate release of these AMPs. One highly conserved pathway is the C. elegans BMP like pathway – regulated by the ligand DBL-1. The DBL-1 pathway is noted for its significant role in development but has also been shown to regulate many post-developmental processes within the worm, including the immune response. We are interested in determining how DBL-1 signaling can mediate a response specific to immunity, separate from its other functions in the worm. Through survival …


Novel Strategies For Glutamate Clearance In The Glia-Deprived Synaptic Hub Of C. Elegans, Joyce Chan Feb 2022

Novel Strategies For Glutamate Clearance In The Glia-Deprived Synaptic Hub Of C. Elegans, Joyce Chan

Dissertations, Theses, and Capstone Projects

As the major excitatory neurotransmitter in the mammalian brain, Glutamate (Glu) is critical for normal neuronal physiology. Disruption in Glu clearance results in hyper-stimulation of glutamatergic circuits, potentially leading to excitotoxic neurodegeneration. The canonical model of brain connectivity describes glutamatergic synapses as well insulated and enveloped by glia. These glia express Glu Transporters (GluTs) which work to clear Glu following synaptic activity. However, critical areas of the brain such as the mammalian hippocampus display poor synaptic isolation, which may result in Glu spillover between adjacent synapses and subsequent loss of circuit specificity. How accurate signal transmission is achieved in these …


Elucidating The Role Of Apl-1, The C. Elegans Ortholog Of The Human Amyloid Precursor Protein, Adanna G. Alexander Jun 2020

Elucidating The Role Of Apl-1, The C. Elegans Ortholog Of The Human Amyloid Precursor Protein, Adanna G. Alexander

Dissertations, Theses, and Capstone Projects

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder, impacting approximately 6 million Americans. AD is the leading cause of dementia amongst the aged population. Post mortem analysis of the brains of AD patients shows high quantities of extracellular Aβ peptide deposits, which are derived from cleavage of the amyloid precursor protein (APP). Mutations in APP and proteins responsible for APP cleavage, PSENs, greatly increase the incidence of developing AD at an early age. Despite its strong correlation to the progression of AD, the role of APP remains unclear.

Here we investigate the role of the Caenorhabditis elegans ortholog, APL-1. We …


Integration Of Bmp And Insulin/Igf-1 Signaling Regulates Multiple Homeostatic Functions In Caenorhabditis Elegans, James F. Clark Sep 2018

Integration Of Bmp And Insulin/Igf-1 Signaling Regulates Multiple Homeostatic Functions In Caenorhabditis Elegans, James F. Clark

Dissertations, Theses, and Capstone Projects

The maintenance of homeostatic functions is key to the survival and well-being of an organism. Regulation of homeostasis relies on varied inputs, both intrinsic and extrinsic, to potentiate a web of interconnected signaling relays. Insulin/IGF-1 signaling (IIS) is a well-known regulator of glucose and lipid metabolism, as well as having far reaching effects in other homeostatic mechanisms. On the other hand, bone morphogenetic protein (BMP), a member of the transforming growth factor beta signaling superfamily, is known for its role in differentiation and development, with only recent studies highlighting potential roles in metabolic homeostasis. Here we elucidate new functions for …


Immobilization Nematodes For Live Imaging Using An Agarose Pad Produced With A Vinyl Record, Katherine A. Rivera Gomez, Mara Schvarzstein Aug 2018

Immobilization Nematodes For Live Imaging Using An Agarose Pad Produced With A Vinyl Record, Katherine A. Rivera Gomez, Mara Schvarzstein

Publications and Research

Numerous microfluidic systems have been developed and used for live imaging of Caenorhabditis nematodes (Allen et al., 2008; Zhang et al., 2008; Krajniak and Lu, 2010; Krajniak et al., 2013; Cornaglia et al., 2015). These systems can be costly, complex to set up, or require high-maintenance between uses. In addition, microfluidic rigs can be thick, preventing live imaging of worms from strains expressing low fluorescence fusion proteins. In the absence of elaborate microfluidic rigs, most live imaging protocols utilize flat agarose pads along with anesthetics and/or microbeads to immobilize the nematodes (Kim et al., 2013). Since this method does not …


Role Of Bec-1/Beclin 1 And Autophagy Genes In C.Elegans Germline Cell Proliferation, Kristina Ames Feb 2016

Role Of Bec-1/Beclin 1 And Autophagy Genes In C.Elegans Germline Cell Proliferation, Kristina Ames

Dissertations, Theses, and Capstone Projects

Autophagy is an evolutionary conserved process involved in the cellular adaptation to stress and basal levels of autophagy are crucial for cellular metabolism and homeostasis. Cellular recycling by autophagy is characterized by the formation of distinctive double-membrane vesicles (autophagosomes) that engulf unnecessary cytoplasmic components, such as organelles and long-lived proteins. Failure to remove protein aggregates and/or damaged organelles, via autophagy, has been implicated in various medical conditions such as liver disease, neurodegenerative diseases and cancer. Autophagy may suppress or promote cellular proliferation in tumors, depending on the type and metabolic state of the cell, where autophagy is generally believed to …


Identification And Characterization Of Protein Phopshatases Regulating The Sma/Mab Pathway In C. Elegans, Sheng Xiong Feb 2014

Identification And Characterization Of Protein Phopshatases Regulating The Sma/Mab Pathway In C. Elegans, Sheng Xiong

Dissertations, Theses, and Capstone Projects

TGF-beta signaling is a conserved signaling pathway among eukaryotes, which controls various normal cellular responses from cell proliferation to cell death. The mutations in its components are found in developmental disorders and cancer. Therefore, this signaling pathway is extensively investigated so that new therapeutic targets could be discovered and novel drugs could be developed. Previous studies suggested the involvement of phosphatases in regulation of TGF-beta signaling, but these studies were performed in cell culture rather than intact organisms. C. elegans is a tractable organism in which to study signaling in vivo. In C. elegans, growth is controled by a conserved …