Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Biology

PDF

University of Kentucky

2017

Lamprey

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

The Lamprey Genome: Illuminating Genomic Change Across Eons And Embryogenesis, Jeramiah J. Smith, Courtney K. M. Waterbury, Melissa C. Keinath, Cody B. Saraceno, Vladimir A. Timoshevskiy, Nataliya Y. Timoshevskaya Oct 2017

The Lamprey Genome: Illuminating Genomic Change Across Eons And Embryogenesis, Jeramiah J. Smith, Courtney K. M. Waterbury, Melissa C. Keinath, Cody B. Saraceno, Vladimir A. Timoshevskiy, Nataliya Y. Timoshevskaya

Commonwealth Computational Summit

The lamprey genome provides unique insights into both the deep evolutionary history of vertebrate genomes and the maintenance of genome structure/integrity over development. The lamprey lineage diverged from all other vertebrates approximately 500 million years ago. As such, comparisons between lamprey and other vertebrates permit reconstruction of ancient duplication and rearrangement events that defined the fundamental architecture and gene content of all extant vertebrate genomes. Lamprey also undergoes programmatic changes genome structure that result in the physical elimination of ~20% of its genomic DNA (~0.5Gb from a ~2 Gb genome) from all somatic cell lineages during early embryonic development. Here, …


Deep Ancestry Of Programmed Genome Rearrangement In Lampreys, Vladimir A. Timoshevskiy, Ralph T. Lampman, Jon E. Hess, Laurie L. Porter, Jeramiah J. Smith Sep 2017

Deep Ancestry Of Programmed Genome Rearrangement In Lampreys, Vladimir A. Timoshevskiy, Ralph T. Lampman, Jon E. Hess, Laurie L. Porter, Jeramiah J. Smith

Biology Faculty Publications

In most multicellular organisms, the structure and content of the genome is rigorously maintained over the course of development. However some species have evolved genome biologies that permit, or require, developmentally regulated changes in the physical structure and content of the genome (programmed genome rearrangement: PGR). Relatively few vertebrates are known to undergo PGR, although all agnathans surveyed to date (several hagfish and one lamprey: Petromyzon marinus) show evidence of large scale PGR. To further resolve the ancestry of PGR within vertebrates, we developed probes that allow simultaneous tracking of nearly all sequences eliminated by PGR in P. marinus and …