Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Life Sciences

Saccharomyces Genome Database & Uniprot Bioinformatics Analysis, Ray A. Enke Dec 2018

Saccharomyces Genome Database & Uniprot Bioinformatics Analysis, Ray A. Enke

Ray Enke Ph.D.

This in class activity introduces basic bioinformatics analysis using the Saccharomyces Genome Database (SGD) and the UniProt Database. The yeast URA3 gene is studied in this activity, however, any other yeast gene can be substituted. This activity is designed for novice instructors and students for implementation into core biology lecture or lab courses.


Mapping Molecular Datasets Back To The Brain Regions They Are Extracted From: Remembering The Native Countries Of Hypothalamic Expatriates And Refugees, Arshad M. Khan, Alice H. Grant, Anais Martinez, Gully Apc Burns, Brendan S. Thatcher, Vishwanath T. Anekonda, Benjamin W. Thompson, Zachary S. Roberts, Daniel H. Moralejo, James E. Blevins Jun 2018

Mapping Molecular Datasets Back To The Brain Regions They Are Extracted From: Remembering The Native Countries Of Hypothalamic Expatriates And Refugees, Arshad M. Khan, Alice H. Grant, Anais Martinez, Gully Apc Burns, Brendan S. Thatcher, Vishwanath T. Anekonda, Benjamin W. Thompson, Zachary S. Roberts, Daniel H. Moralejo, James E. Blevins

Arshad M. Khan, Ph.D.

This article, which includes novel unpublished data along with commentary and analysis,
focuses on approaches to link transcriptomic, proteomic, and peptidomic datasets mined from
brain tissue to the original locations within the brain that they are derived from using digital atlas
mapping techniques. We use, as an example, the transcriptomic, proteomic and peptidomic
analyses conducted in the mammalian hypothalamus. Following a brief historical overview, we
highlight studies that have mined biochemical and molecular information from the hypothalamus
and then lay out a strategy for how these data can be linked spatially to the mapped locations in a
canonical brain atlas …


Statistical Contributions To Bioinformatics: Design, Modeling, Structure Learning, And Integration, Jeffrey S. Morris, Veera Baladandayuthapani Dec 2016

Statistical Contributions To Bioinformatics: Design, Modeling, Structure Learning, And Integration, Jeffrey S. Morris, Veera Baladandayuthapani

Jeffrey S. Morris

The advent of high-throughput multi-platform genomics technologies providing whole-genome molecular summaries of biological samples has revolutionalized biomedical research. These technologies yield highly structured big data, whose analysis poses significant quantitative challenges. The field of Bioinformatics has emerged to deal with these challenges, and is comprised of many quantitative and biological scientists working together to eectively process these data and extract the treasure trove of information they contain. Statisticians, with their deep understanding of variability and uncertainty quantification, play a key role in these efforts. In this article, we attempt to summarize some of the key contributions of statisticians to bioinformatics, …


Proteomic Analysis Of 17Β-Estradiol Degradation By Stenotrophomonas Maltophilia, Zhongtian Li May 2012

Proteomic Analysis Of 17Β-Estradiol Degradation By Stenotrophomonas Maltophilia, Zhongtian Li

Z Li

Microbial degradation plays a critical role in determining the environmental fate of steroid hormones, such as 17β-estradiol (E2). The molecular mechanisms governing the microbial transformation of E2 and its primary degradation intermediate, estrone (E1), are largely unknown. The objective of this study was to identify metabolism pathways that might be involved in microbial estrogen degradation. To achieve the objective, Stenotrophomonas maltophilia strain ZL1 was used as a model estrogen degrading bacterium and its protein expression level during E2/E1 degradation was studied using quantitative proteomics. During an E2 degradation experiment, strain ZL1 first converted E2 to E1 stoichiometrically. At 16 h …


Statistical Methods For Proteomic Biomarker Discovery Based On Feature Extraction Or Functional Modeling Approaches, Jeffrey S. Morris Jan 2012

Statistical Methods For Proteomic Biomarker Discovery Based On Feature Extraction Or Functional Modeling Approaches, Jeffrey S. Morris

Jeffrey S. Morris

In recent years, developments in molecular biotechnology have led to the increased promise of detecting and validating biomarkers, or molecular markers that relate to various biological or medical outcomes. Proteomics, the direct study of proteins in biological samples, plays an important role in the biomarker discovery process. These technologies produce complex, high dimensional functional and image data that present many analytical challenges that must be addressed properly for effective comparative proteomics studies that can yield potential biomarkers. Specific challenges include experimental design, preprocessing, feature extraction, and statistical analysis accounting for the inherent multiple testing issues. This paper reviews various computational …


Integrative Bayesian Analysis Of High-Dimensional Multi-Platform Genomics Data, Wenting Wang, Veerabhadran Baladandayuthapani, Jeffrey S. Morris, Bradley M. Broom, Ganiraju C. Manyam, Kim-Anh Do Jan 2012

Integrative Bayesian Analysis Of High-Dimensional Multi-Platform Genomics Data, Wenting Wang, Veerabhadran Baladandayuthapani, Jeffrey S. Morris, Bradley M. Broom, Ganiraju C. Manyam, Kim-Anh Do

Jeffrey S. Morris

Motivation: Analyzing data from multi-platform genomics experiments combined with patients’ clinical outcomes helps us understand the complex biological processes that characterize a disease, as well as how these processes relate to the development of the disease. Current integration approaches that treat the data are limited in that they do not consider the fundamental biological relationships that exist among the data from platforms.

Statistical Model: We propose an integrative Bayesian analysis of genomics data (iBAG) framework for identifying important genes/biomarkers that are associated with clinical outcome. This framework uses a hierarchical modeling technique to combine the data obtained from multiple platforms …


Statistical Contributions To Proteomic Research, Jeffrey S. Morris, Keith A. Baggerly, Howard B. Gutstein, Kevin R. Coombes Jan 2010

Statistical Contributions To Proteomic Research, Jeffrey S. Morris, Keith A. Baggerly, Howard B. Gutstein, Kevin R. Coombes

Jeffrey S. Morris

Proteomic profiling has the potential to impact the diagnosis, prognosis, and treatment of various diseases. A number of different proteomic technologies are available that allow us to look at many proteins at once, and all of them yield complex data that raise significant quantitative challenges. Inadequate attention to these quantitative issues can prevent these studies from achieving their desired goals, and can even lead to invalid results. In this chapter, we describe various ways the involvement of statisticians or other quantitative scientists in the study team can contribute to the success of proteomic research, and we outline some of the …


Informatics And Statistics For Analyzing 2-D Gel Electrophoresis Images, Andrew W. Dowsey, Jeffrey S. Morris, Howard G. Gutstein, Guang Z. Yang Jan 2010

Informatics And Statistics For Analyzing 2-D Gel Electrophoresis Images, Andrew W. Dowsey, Jeffrey S. Morris, Howard G. Gutstein, Guang Z. Yang

Jeffrey S. Morris

Whilst recent progress in ‘shotgun’ peptide separation by integrated liquid chromatography and mass spectrometry (LC/MS) has enabled its use as a sensitive analytical technique, proteome coverage and reproducibility is still limited and obtaining enough replicate runs for biomarker discovery is a challenge. For these reasons, recent research demonstrates the continuing need for protein separation by two-dimensional gel electrophoresis (2-DE). However, with traditional 2-DE informatics, the digitized images are reduced to symbolic data though spot detection and quantification before proteins are compared for differential expression by spot matching. Recently, a more robust and automated paradigm has emerged where gels are directly …