Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Bioinformatics

Faculty Publications

Series

Support vector machines

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Seqnls: Nuclear Localization Signal Prediction Based On Frequent Pattern Mining And Linear Motif Scoring, J.-R. Lin, Jianjun Hu Jan 2013

Seqnls: Nuclear Localization Signal Prediction Based On Frequent Pattern Mining And Linear Motif Scoring, J.-R. Lin, Jianjun Hu

Faculty Publications

Nuclear localization signals (NLSs) are stretches of residues in proteins mediating their importing into the nucleus. NLSs are known to have diverse patterns, of which only a limited number are covered by currently known NLS motifs. Here we propose a sequential pattern mining algorithm SeqNLS to effectively identify potential NLS patterns without being constrained by the limitation of current knowledge of NLSs. The extracted frequent sequential patterns are used to predict NLS candidates which are then filtered by a linear motif-scoring scheme based on predicted sequence disorder and by the relatively local conservation (IRLC) based masking.

The experiment results on …


Computational Prediction Of Heme-Binding Residues By Exploiting Residue Interaction Network, R. Liu, Jianjun Hu Jan 2011

Computational Prediction Of Heme-Binding Residues By Exploiting Residue Interaction Network, R. Liu, Jianjun Hu

Faculty Publications

Computational identification of heme-binding residues is beneficial for predicting and designing novel heme proteins. Here we proposed a novel method for heme-binding residue prediction by exploiting topological properties of these residues in the residue interaction networks derived from three-dimensional structures. Comprehensive analysis showed that key residues located in heme-binding regions are generally associated with the nodes with higher degree, closeness and betweenness, but lower clustering coefficient in the network. HemeNet, a support vector machine (SVM) based predictor, was developed to identify heme-binding residues by combining topological features with existing sequence and structural features. The results showed that incorporation of network-based …