Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Biodiversity

Dartmouth Scholarship

Vertebrata

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Lidar Remote Sensing Variables Predict Breeding Habitat Of A Neotropical Migrant Bird, Scott J. Goetz, Daniel Steinberg, Matthew G. G. Betts, Richard T. Holmes Jun 2010

Lidar Remote Sensing Variables Predict Breeding Habitat Of A Neotropical Migrant Bird, Scott J. Goetz, Daniel Steinberg, Matthew G. G. Betts, Richard T. Holmes

Dartmouth Scholarship

A topic of recurring interest in ecological research is the degree to which vegetation structure influences the distribution and abundance of species. Here we test the applicability of remote sensing, particularly novel use of waveform lidar measurements, for quantifying the habitat heterogeneity of a contiguous northern hardwoods forest in the northeastern United States. We apply these results to predict the breeding habitat quality, an indicator of reproductive output of a well-studied Neotropical migrant songbird, the Black-throated Blue Warbler (Dendroica caerulescens). We found that using canopy vertical structure metrics provided unique information for models of habitat quality and spatial patterns of …


Fish Distributions And Nutrient Cycling In Streams: Can Fish Create Biogeochemical Hotspots, Peter B. Mcintyre, Alexander S. Flecker, Michael J. Vanni, James M. Hood, Brad W. Taylor, Steven A. Thomas Aug 2008

Fish Distributions And Nutrient Cycling In Streams: Can Fish Create Biogeochemical Hotspots, Peter B. Mcintyre, Alexander S. Flecker, Michael J. Vanni, James M. Hood, Brad W. Taylor, Steven A. Thomas

Dartmouth Scholarship

Rates of biogeochemical processes often vary widely in space and time, and characterizing this variation is critical for understanding ecosystem functioning. In streams, spatial hotspots of nutrient transformations are generally attributed to physical and microbial processes. Here we examine the potential for heterogeneous distributions of fish to generate hotspots of nutrient recycling. We measured nitrogen (N) and phosphorus (P) excretion rates of 47 species of fish in an N-limited Neotropical stream, and we combined these data with population densities in each of 49 stream channel units to estimate unit- and reach-scale nutrient recycling. Species varied widely in rates of N …