Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 32

Full-Text Articles in Life Sciences

Dpc29 Promotes Mitochondrial Translation Post-Initation In Saccharomyces Cerevisiae, Kyle Andrew Hubble Dec 2022

Dpc29 Promotes Mitochondrial Translation Post-Initation In Saccharomyces Cerevisiae, Kyle Andrew Hubble

Graduate School of Biomedical Sciences Theses and Dissertations

Although the cytosolic and bacterial translation systems are well studied, much less is known about translation in mitochondria. In the yeast Saccharomyces cerevisiae, mitochondrial gene expression is predominately regulated by translational activators. These regulators are thought to promote translation by binding the elongated 5’-UTRs on their target mRNAs. Since mammalian mitochondrial mRNAs generally lack 5’-UTRs, they must regulate translation by other mechanisms. As expected, most yeast translational activators lack orthologues in mammals. Recently, a mitochondrial gene-specific translational activator, TACO1, was reported in mice and humans. To better define its role in mitochondrial translation I examined the yeast TACO1 orthologue, DPC29. …


Establishing A Biochemical System For The Purification And Atpase Activity Of Gst-Dbp5, Sarah R. Utley, Rachel E. Rigsby Phd, Rebecca L. Adams Phd Jan 2022

Establishing A Biochemical System For The Purification And Atpase Activity Of Gst-Dbp5, Sarah R. Utley, Rachel E. Rigsby Phd, Rebecca L. Adams Phd

Science University Research Symposium (SURS)

The export of mRNA out of the nucleus is a crucial step for eukaryotic gene expression. The export of mRNA transcripts is aided by Mex67, which allows export through the nuclear pore complex doorways in the nuclear envelope. Once out of the nucleus, a protein known as Dbp5, bound to ATP, Gle1, and Nup42 aids in the directionality of mRNA export by helping remove Mex67 from the mRNA strand. Following interaction with RNA, Dbp5 then hydrolyzes ATP so that it unbinds the mRNA, allowing for enzyme recycling. Previous efforts worked towards the purification of Dbp5, but the attempts were unsuccessful …


Small Studies, Big Decisions: The Role Of Pilot/Feasibility Studies In Incremental Science And Premature Scale-Up Of Behavioral Interventions, Michael William Beets, Lauren Von Klinggraeff, Robert G. Weaver, Bridget Ryan Armstrong, Sarah Burkart Sep 2021

Small Studies, Big Decisions: The Role Of Pilot/Feasibility Studies In Incremental Science And Premature Scale-Up Of Behavioral Interventions, Michael William Beets, Lauren Von Klinggraeff, Robert G. Weaver, Bridget Ryan Armstrong, Sarah Burkart

Faculty Publications

Background: Careful consideration and planning are required to establish “sufficient” evidence to ensure an investment in a larger, more well-powered behavioral intervention trial is worthwhile. In the behavioral sciences, this process typically occurs where smaller-scale studies inform larger-scale trials. Believing that one can do the same things and expect the same outcomes in a larger-scale trial that were done in a smaller-scale preliminary study (i.e., pilot/feasibility) is wishful thinking, yet common practice. Starting small makes sense, but small studies come with big decisions that can influence the usefulness of the evidence designed to inform decisions about moving forward with a …


Chemical Damage To Mrna And Its Impact On Ribosome Quality-Control And Stress-Response Pathways In Eukaryotic Cells, Liewei Yan Aug 2021

Chemical Damage To Mrna And Its Impact On Ribosome Quality-Control And Stress-Response Pathways In Eukaryotic Cells, Liewei Yan

Arts & Sciences Electronic Theses and Dissertations

Ribosome often faces defective adducts that disrupt its movement along the mRNA template. These adducts are primarily caused by chemical damage to mRNA and are highly detrimental to the decoding process on the ribosome. Hence, unless dealt with, chemical damage to RNA has been hypothesized to lead to the production of toxic protein products. Even more detrimental is the ability of damaged mRNA to drastically affect ribosome homeostasis through stalling. This in turn would lead to greatly diminished translation capacity of cells. Therefore, the inability of cells to recognize and resolve translational-stalling events is detrimental to proteostasis and could even …


Cytoplasmic Polyadenylation Element Binding Protein 2 Alternative Splicing Regulates Hif1Α During Chronic Hypoxia, Emily M. Mayo Jun 2021

Cytoplasmic Polyadenylation Element Binding Protein 2 Alternative Splicing Regulates Hif1Α During Chronic Hypoxia, Emily M. Mayo

USF Tampa Graduate Theses and Dissertations

Chronic pulmonary hypoxia commonly results in the sustained expression of HIF1 (hypoxia inducible factor 1), a heterodimeric transcription factor, that, if unrestrained, can result in dramatic vasculature remodeling, pulmonary arterial hypertension, and right-sided heart failure. Together, these pulmonary disorders cost approximately $100 billion annually to treat due to the limited therapeutic targets designed to inhibit HIF1 expression. In this study, we introduce a translational regulator of HIF1 expression, known as Cytosolic polyadenylation element binding proteins 2 (CPEB2). Our lab has previously demonstrated in cancer cells that alternatively spliced isoforms of CPEB2 regulate the translation of the HIF1 oxygen-dependent subunit, HIF1α, …


Identification Of Ires Activity In Cellular Mrnas And Viral Rna Using A Circular Rna Construct, Priyanka Sehta Jan 2021

Identification Of Ires Activity In Cellular Mrnas And Viral Rna Using A Circular Rna Construct, Priyanka Sehta

Legacy Theses & Dissertations (2009 - 2024)

Translation initiation is a critical step in the process of protein synthesis. The canonical way of translation initiation involves ribosomes being recruited to the 7-methyl guanosine cap present at the 5’end of the untranslated region (5’ UTR) of the RNAs. However, viral RNAs and some cellular mRNAs lack this 5’ cap structure and thus deploy an alternate non-canonical translation initiation mechanism. In non-canonical translation initiation, ribosome recruitment is facilitated by the RNA secondary structures called Internal Ribosome Entry Site (IRES) present most often in the 5’ UTR. To measure IRES-mediated translation, the dual luciferase assay has been the gold standard. …


Iojap: Morphological And Physiological Phenotype Characterization In Arabidopsis, Thomas Jay Payne Dec 2020

Iojap: Morphological And Physiological Phenotype Characterization In Arabidopsis, Thomas Jay Payne

Doctoral Dissertations

IOJAP protein is found in all organisms that contain a ribosome of bacterial origin. The majority of studies suggest that IOJAP plays a role in translation, although this has yet to be thoroughly investigated in plants. Using Arabidopsis thaliana, an extensive phenotype characterization of iojap mutants was performed. Many processes of plant growth were slightly impaired at optimal temperature (22˚C) but became severely hindered at low temperature (12˚C and 4˚C). These cold temperature defects manifested in an overall reduction of plant growth as well as variegation, chlorosis, leaf hyponasty, as well as reduced maximum quantum yield (Fv/F …


Regulation Of Gene Expression Through Ribosome-Associated Proteins, Clare Margaret Miller Jan 2020

Regulation Of Gene Expression Through Ribosome-Associated Proteins, Clare Margaret Miller

Legacy Theses & Dissertations (2009 - 2024)

Translation is a crucial mechanism for generating proteins to carry out cellular processes and for ensuring proper cell functions. Ribosomes are at the center of translation and are complex pieces of machinery. They consist of at least 80 core eukaryotic ribosomal proteins, which are conserved from prokaryotes, and four ribosomal RNAs (rRNAs): 18S, 28S, 5,8A 5S. In addition, numerous translation factors aid the ribosome in protein production. While ribosomes are typically described by these core features, they are known to exist in a heterogenous pool with variations in protein composition, modifications of rRNA, and an assortment of non-ribosomal proteins that …


The Impact Of Mrna Structure On Trna Selection And Ribosome Rescue, Erica Nicole Thomas Aug 2019

The Impact Of Mrna Structure On Trna Selection And Ribosome Rescue, Erica Nicole Thomas

Arts & Sciences Electronic Theses and Dissertations

The faithful and rapid translation of proteins from genetic information is an essential feature of the ribosome. The general process of tRNA selection is governed by the ability of the ribosome to select for the aminoacylated tRNA (aa-tRNA) that matches the codon in its A-site. The efficiency and accuracy of this selection depends on the ability of nucleotides to form proper hydrogen bonds. While much is known about how chemical alterations of tRNA and rRNA can impact the fidelity of translation, less is known about how similar changes to mRNA affect decoding. In this work, we describe several studies aimed …


Rack1 Is A Critical Component In Ires-Mediated Translation, Ethan Asher Lafontaine Jan 2018

Rack1 Is A Critical Component In Ires-Mediated Translation, Ethan Asher Lafontaine

Legacy Theses & Dissertations (2009 - 2024)

Due to its sheer number of interacting partners, core ribosomal protein RACK1 is a key player in many cellular processes and has been shown to play a vital role of translation initiation of the Hepatitis C virus RNA. The HCV 5′ untranslated region contains an internal ribosome entry site. IRES-mediated translation is a process employed in eukaryotes by select viruses and some cellular mRNAs by which translation initiation bypasses the canonical mRNA cap-dependent pathway by means of an RNA secondary structure (the IRES). While cap-dependent translation requires the recruitment of a suite of initiation factors, IRES-mediated translation requires few to …


Regulation Of Gene Expression By Rna Binding Proteins And Micrornas, Kyle Cottrell Dec 2017

Regulation Of Gene Expression By Rna Binding Proteins And Micrornas, Kyle Cottrell

Arts & Sciences Electronic Theses and Dissertations

Regulation of gene expression is essential to life. Post-transcriptional regulation of gene expression is a complex process with many inputs that lead to changes in localization, translation and stability of mRNAs. The translation and stability of many mRNAs is regulated by cis-elements, such as mRNA-structure or codon optimality; and by trans-acting factors such as RBPs and miRNAs. Here I report on the complex interactions between RBPs, miRNAs and characteristics of their target mRNAs in respect to effects on translation and RNA stability.

Using a reporter based approach we studied modulation of microRNA-mediated repression by various mRNA characteristics. We observed the …


Structural Basis For Earp-Mediated Arginine Glycosylation Of Translation Elongation Factor Ef-P, Ralph Krafczyk, Jakub Macošek, Pravin Kumar Ankush Jagtap, Daniel Gast, Swetlana Wunder, Prithiba Mitra, Amit Kumar Jha, Jürgen Rohr, Anja Hoffmann-Röder, Kirsten Jung, Janosch Hennig, Jürgen Lassak Sep 2017

Structural Basis For Earp-Mediated Arginine Glycosylation Of Translation Elongation Factor Ef-P, Ralph Krafczyk, Jakub Macošek, Pravin Kumar Ankush Jagtap, Daniel Gast, Swetlana Wunder, Prithiba Mitra, Amit Kumar Jha, Jürgen Rohr, Anja Hoffmann-Röder, Kirsten Jung, Janosch Hennig, Jürgen Lassak

Pharmaceutical Sciences Faculty Publications

Glycosylation is a universal strategy to posttranslationally modify proteins. The recently discovered arginine rhamnosylation activates the polyproline-specific bacterial translation elongation factor EF-P. EF-P is rhamnosylated on arginine 32 by the glycosyltransferase EarP. However, the enzymatic mechanism remains elusive. In the present study, we solved the crystal structure of EarP from Pseudomonas putida. The enzyme is composed of two opposing domains with Rossmann folds, thus constituting a B pattern-type glycosyltransferase (GT-B). While dTDP-β-L-rhamnose is located within a highly conserved pocket of the C-domain, EarP recognizes the KOW-like N-domain of EF-P. Based on our data, we propose a structural model for …


Carbonyl Reduction By Ymfi Completes The Modification Of Ef-P In Bacillus Subtilis To Prevent Accumulation Of An Inhibitory Modification State, Katherine R. Hummels, Anne Witzky, Andrei Rajkovic, Rodney Tollerson Ii, Lisa A. Jones, Michael Ibba, Daniel B. Kearns Aug 2017

Carbonyl Reduction By Ymfi Completes The Modification Of Ef-P In Bacillus Subtilis To Prevent Accumulation Of An Inhibitory Modification State, Katherine R. Hummels, Anne Witzky, Andrei Rajkovic, Rodney Tollerson Ii, Lisa A. Jones, Michael Ibba, Daniel B. Kearns

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Translation elongation factor P (EF‐P) in Bacillus subtilis is required for a form of surface migration called swarming motility. Furthermore, B. subtilis EF‐P is post‐translationally modified with a 5‐aminopentanol group but the pathway necessary for the synthesis and ligation of the modification is unknown. Here we determine that the protein YmfI catalyzes the reduction of EF‐P‐5 aminopentanone to EF‐P‐5 aminopentanol. In the absence of YmfI, accumulation of 5‐aminopentanonated EF‐P is inhibitory to swarming motility. Suppressor mutations that enhanced swarming in the absence of YmfI were found at two positions on EF‐P, including one that changed the conserved modification site (Lys …


Engineering Small Molecule Based Dimerization To Induce Translation And Provide Optogenetic Control, Catherine Wright Nov 2016

Engineering Small Molecule Based Dimerization To Induce Translation And Provide Optogenetic Control, Catherine Wright

Chemistry and Chemical Biology ETDs

We wanted to develop a system that combines the spatial control of photoactivation and control of translation to build a tool to spatially control translation in neurons. This kind of tool could be used to investigate the role of spatially controlled translation of any protein in neural behavior. In this way the development and growth of neural processes could be studied to elucidate the mechanisms for spatially sensitive events such as pathfinding, repair, or long-term potentiation.

Chemically induced dimerization was used to install a switch into the activation of translation for specific genes. An abscisic acid (ABA) dependent dimerization of …


Translation Control Of Swarming Proficiency In Bacillus Subtilis By 5-Amino-Pentanolylated Elongation Factor P, Andrei Rajkovic, Katherine R. Hummels, Anne Witzky, Sarah Erickson, Philip R. Gafken, Julian P. Whitelegge, Kym F. Faull, Daniel B. Kearns, Michael Ibba May 2016

Translation Control Of Swarming Proficiency In Bacillus Subtilis By 5-Amino-Pentanolylated Elongation Factor P, Andrei Rajkovic, Katherine R. Hummels, Anne Witzky, Sarah Erickson, Philip R. Gafken, Julian P. Whitelegge, Kym F. Faull, Daniel B. Kearns, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Elongation factor P (EF-P) accelerates diprolyl synthesis and requires a posttranslational modification to maintain proteostasis. Two phylogenetically distinct EF-P modification pathways have been described and are encoded in the majority of Gram-negative bacteria, but neither is present in Gram-positive bacteria. Prior work suggested that the EF-P-encoding gene (efp) primarily supports Bacillus subtilis swarming differentiation, whereas EF-P in Gram-negative bacteria has a more global housekeeping role, prompting our investigation to determine whether EF-P is modified and how it impacts gene expression in motile cells. We identified a 5-aminopentanol moiety attached to Lys32 of B. subtilis EF-P that is …


Multiple Quality Control Pathways Limit Non-Protein Amino Acid Use By Yeast Cytoplasmic Phenylalanyl-Trna Synthetase, Adil Moghal, Lin Hwang, Kym F. Faull, Michael Ibba May 2016

Multiple Quality Control Pathways Limit Non-Protein Amino Acid Use By Yeast Cytoplasmic Phenylalanyl-Trna Synthetase, Adil Moghal, Lin Hwang, Kym F. Faull, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Non-protein amino acids, particularly isomers of the proteinogenic amino acids, present a threat to proteome integrity if they are mistakenly inserted into proteins. Quality control during aminoacyl-tRNA synthesis reduces non-protein amino acid incorporation by both substrate discrimination and proofreading. For example phenylalanyl-tRNA synthetase (PheRS) proofreads the non-protein hydroxylated phenylalanine derivative m-Tyr after its attachment to tRNAPhe. We now show in Saccharomyces cerevisiae that PheRS misacylation of tRNAPhe with the more abundant Phe oxidation product o-Tyr is limited by kinetic discrimination against o-Tyr-AMP in the transfer step followed by o-Tyr-AMP release from the synthetic …


Mechanisms Of Regulation Of Tau Ires Mediated Translation, Niza Nemkul May 2016

Mechanisms Of Regulation Of Tau Ires Mediated Translation, Niza Nemkul

Dissertations & Theses (Open Access)

The translation of most eukaryotic mRNAs occurs in a cap-dependent manner. However, a subset of mRNAs are capable of initiating translation in a cap-independent manner by utilizing sequences in their 5’ UTR called IRES. It was previously shown that the 5’ UTR of the tau mRNA contains an IRES. In this study I show that IRES dependent translation of tau IRES is regulated at multiple levels in order to regulate the expression of the tau protein.

Tau protein is ubiquitously expressed but is concentrated in the brain. In this study, I utilized neural and non-neural cell lines to show that …


O6-Methylguanosine Leads To Position-Dependent Effects On Ribosome Speed And Fidelity, Benjamin H. Hudson, Hani S. Zaher Aug 2015

O6-Methylguanosine Leads To Position-Dependent Effects On Ribosome Speed And Fidelity, Benjamin H. Hudson, Hani S. Zaher

Biology Faculty Publications & Presentations

Nucleic acids are under constant assault from endogenous and environmental agents that alter their physical and chemical properties. O6-methylation of guanosine (m(6)G) is particularly notable for its high mutagenicity, pairing with T, during DNA replication. Yet, while m(6)G accumulates in both DNA and RNA, little is known about its effects on RNA. Here, we investigate the effects of m(6)G on the decoding process, using a reconstituted bacterial translation system. m(6)G at the first and third position of the codon decreases the accuracy of tRNA selection. The ribosome readily incorporates near-cognate aminoacyl-tRNAs (aa-tRNAs) by forming m(6)G-uridine codon-anticodon pairs. Surprisingly, the introduction …


Mistranslation Of The Genetic Code, Adil Moghal, Kyle Mohler, Michael Ibba Sep 2014

Mistranslation Of The Genetic Code, Adil Moghal, Kyle Mohler, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

During mRNA decoding at the ribosome, deviations from stringent codon identity, or “mistranslation,” are generally deleterious and infrequent. Observations of organisms that decode some codons ambiguously, and the discovery of a compensatory increase in mistranslation frequency to combat environmental stress have changed the way we view “errors” in decoding. Modern tools for the study of the frequency and phenotypic effects of mistranslation can provide quantitative and sensitive measurements of decoding errors that were previously inaccessible. Mistranslation with non‐protein amino acids, in particular, is an enticing prospect for new drug therapies and the study of molecular evolution.


Translation Initiation Rate Determines The Impact Of Ribosome Stalling On Bacterial Protein Synthesis, Steven J. Hersch, Sara Elgamal, Assaf Katz, Michael Ibba, William Wiley Navarre Aug 2014

Translation Initiation Rate Determines The Impact Of Ribosome Stalling On Bacterial Protein Synthesis, Steven J. Hersch, Sara Elgamal, Assaf Katz, Michael Ibba, William Wiley Navarre

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Ribosome stalling during translation can be caused by a number of characterized mechanisms. However, the impact of elongation stalls on protein levels is variable, and the reasons for this are often unclear. To investigate this relationship, we examined the bacterial translation elongation factor P (EF-P), which plays a critical role in rescuing ribosomes stalled at specific amino acid sequences including polyproline motifs. In previous proteomic analyses of both Salmonella and Escherichia coli efp mutants, it was evident that not all proteins containing a polyproline motif were dependent on EF-P for efficient expression in vivo . The α- and β-subunits of …


Reduced Amino Acid Specificity Of Mammalian Tyrosyl-Trna Synthetase Is Associated With Elevated Mistranslation Of Tyr Codons, Medha Raina, Adil Moghal, Amanda Kano, Mathew Jerums, Paul D. Schnier, Shun Luo, Rohini Deshpande, Pavel D. Bondarenko, Henry Lin, Michael Ibba May 2014

Reduced Amino Acid Specificity Of Mammalian Tyrosyl-Trna Synthetase Is Associated With Elevated Mistranslation Of Tyr Codons, Medha Raina, Adil Moghal, Amanda Kano, Mathew Jerums, Paul D. Schnier, Shun Luo, Rohini Deshpande, Pavel D. Bondarenko, Henry Lin, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Quality control operates at different steps in translation to limit errors to approximately one mistranslated codon per 10,000 codons during mRNA-directed protein synthesis. Recent studies have suggested that error rates may actually vary considerably during translation under different growth conditions. Here we examined the misincorporation of Phe at Tyr codons during synthesis of a recombinant antibody produced in tyrosine-limited Chinese hamster ovary (CHO) cells. Tyr to Phe replacements were previously found to occur throughout the antibody at a rate of up to 0.7% irrespective of the identity or context of the Tyr codon translated. Despite this comparatively high mistranslation rate, …


Direction Of Aminoacylated Transfer Rnas Into Antibiotic Synthesis And Peptidoglycan-Mediated Antibiotic Resistance, Jennifer Shepherd, Michael Ibba Jul 2013

Direction Of Aminoacylated Transfer Rnas Into Antibiotic Synthesis And Peptidoglycan-Mediated Antibiotic Resistance, Jennifer Shepherd, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Prokaryotic aminoacylated‐transfer RNAs often need to be efficiently segregated between translation and other cellular biosynthetic pathways. Many clinically relevant bacteria, including Streptococcus pneumoniae, Staphylococcus aureus, Enterococcus faecalis and Pseudomonas aeruginosa direct some aminoacylated‐tRNA species into peptidoglycan biosynthesis and/or membrane phospholipid modification. Subsequent indirect peptidoglycan cross‐linkage or change in membrane permeability is often a prerequisite for high‐level antibiotic resistance. In Streptomycetes, aminoacylated‐tRNA species are used for antibiotic synthesis as well as antibiotic resistance. The direction of coding aminoacylated‐tRNA molecules away from translation and into antibiotic resistance and synthesis pathways are discussed in this review.


(R)-Β-Lysine Modified Elongation Factor P Functions In Translation Elongation, Tammy J. Bullwinkle, S. Betty Zou, Andrei Rajkovic, Steven J. Hersch, Sara Elgamal, Nathaniel Robinson, David Smil, Yuri Bolshan, William Wiley Navarre, Michael Ibba Dec 2012

(R)-Β-Lysine Modified Elongation Factor P Functions In Translation Elongation, Tammy J. Bullwinkle, S. Betty Zou, Andrei Rajkovic, Steven J. Hersch, Sara Elgamal, Nathaniel Robinson, David Smil, Yuri Bolshan, William Wiley Navarre, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Post-translational modification of bacterial elongation factor P (EF-P) with (R)-β-lysine at a conserved lysine residue activates the protein in vivo and increases puromycin reactivity of the ribosome in vitro. The additional hydroxylation of EF-P at the same lysine residue by the YfcM protein has also recently been described. The roles of modified and unmodified EF-P during different steps in translation, and how this correlates to its physiological role in the cell, have recently been linked to the synthesis of polyproline stretches in proteins. Polysome analysis indicated that EF-P functions in translation elongation, rather than initiation as proposed previously. This was …


Association Of A Multi-Synthetase Complex With Translating Ribosomes In The Archaeon Thermococcus Kodakarensis, Medha Raina, Sara Elgamal, Thomas J. Santangelo, Michael Ibba Jun 2012

Association Of A Multi-Synthetase Complex With Translating Ribosomes In The Archaeon Thermococcus Kodakarensis, Medha Raina, Sara Elgamal, Thomas J. Santangelo, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

In archaea and eukaryotes aminoacyl-tRNA synthetases (aaRSs) associate in multi-synthetase complexes (MSCs), however the role of such MSCs in translation is unknown. MSC function was investigated in vivo in the archaeon Thermococcus kodakarensis, wherein six aaRSs were affinity co-purified together with several other factors involved in protein synthesis, suggesting that MSCs may interact directly with translating ribosomes. In support of this hypothesis, the aminoacyltRNA synthetase (aaRS) activities of the MSC were enriched in isolated T. kodakarensis polysome fractions. These data indicate that components of the archaeal protein synthesis machinery associate into macromolecular assemblies in vivo and provide the potential …


Beta-Lysine Discrimination By Lysyl-Trna Synthetase, Marla S. Gilreath, Hervé Roy, Tammy J. Bullwinkle, Assaf Katz, Michael Ibba, William Wiley Navarre Sep 2011

Beta-Lysine Discrimination By Lysyl-Trna Synthetase, Marla S. Gilreath, Hervé Roy, Tammy J. Bullwinkle, Assaf Katz, Michael Ibba, William Wiley Navarre

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Elongation factor P is modified with (R)‐β‐lysine by the lysyl‐tRNA synthetase (LysRS) paralog PoxA. PoxA specificity is orthogonal to LysRS, despite their high similarity. To investigate α‐ and β‐lysine recognition by LysRS and PoxA, amino acid replacements were made in the LysRS active site guided by the PoxA structure. A233S LysRS behaved as wild type with α‐lysine, while the G469A and A233S/G469A variants decreased stable α‐lysyl‐adenylate formation. A233S LysRS recognized β‐lysine better than wildtype, suggesting a role for this residue in discriminating α‐ and β‐amino acids. Both enantiomers of β‐lysine were substrates for tRNA aminoacylation by LysRS, which, together with …


The Role Of Trm9 In Stress Responses, Ashish Ravindra Patil Jan 2011

The Role Of Trm9 In Stress Responses, Ashish Ravindra Patil

Legacy Theses & Dissertations (2009 - 2024)

Cells need to respond appropriately to environmental changes in order to maintain homeostasis. The cellular response to an environmental stress is regulated at transcriptional, translational and post translational levels. The tRNA, which acts as an adaptor molecule between the mRNA and the protein, plays an important role in the translational regulation of cellular responses to stress and is one of the most heavily modified biomolecules. In Saccharomyces cerevisiae , the wobble uracil of the tRNA(3'-UCU-5') Arg, tRNA(3'-UUC-5') Glu and certain other specific tRNAs are modified to 5-methoxycarbonylmethyluridine (mcm5U) and 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U) residues by the tRNA methyltransferase 9 (Trm9). Modifications at …


Expression, Purification, And Analysis Of Unknown Translation Factors From Escherichia Coli: A Synthesis Approach, Justin D. Walter, Peter Littlefield, Scott P. Delbecq, Gerry Prody, P. Clint Spiegel Jan 2010

Expression, Purification, And Analysis Of Unknown Translation Factors From Escherichia Coli: A Synthesis Approach, Justin D. Walter, Peter Littlefield, Scott P. Delbecq, Gerry Prody, P. Clint Spiegel

Chemistry Faculty and Staff Publications

New approaches are currently being developed to expose biochemistry and molecular biology undergraduates to a more interactive learning environment. Here, we propose a unique project-based laboratory module, which incorporates exposure to biophysical chemistry approaches to address problems in protein chemistry. Each of the experiments described herein contributes to the stepwise process of isolating, identifying, and analyzing a protein involved in a central biological process, prokaryotic translation. Students are provided with expression plasmids that harbor an unknown translation factor, and it is their charge to complete a series of experiments that will allow them to develop hypotheses for discovering the identity …


Trnas: Cellular Barcodes For Amino Acids, Ranat Banerjee, Shawn Chen, Kiley Dare, Marla Gilreath, Mette Praetorius-Ibba, Medha Raina, Noah M. Reynolds, Theresa E. Rogers, Hervé Roy, Srujana S. Yadavalli, Michael Ibba Nov 2009

Trnas: Cellular Barcodes For Amino Acids, Ranat Banerjee, Shawn Chen, Kiley Dare, Marla Gilreath, Mette Praetorius-Ibba, Medha Raina, Noah M. Reynolds, Theresa E. Rogers, Hervé Roy, Srujana S. Yadavalli, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

The role of tRNA in translating the genetic code has received considerable attention over the last 50 years, and we now know in great detail how particular amino acids are specifically selected and brought to the ribosome in response to the corresponding mRNA codon. Over the same period, it has also become increasingly clear that the ribosome is not the only destination to which tRNAs deliver amino acids, with processes ranging from lipid modification to antibiotic biosynthesis all using aminoacyl‐tRNAs as substrates. Here we review examples of alternative functions for tRNA beyond translation, which together suggest that the role of …


Aminoacyl-Trna Synthetase Complexes: Molecular Multitasking Revealed, Corinne D. Hausmann, Michael Ibba Jul 2008

Aminoacyl-Trna Synthetase Complexes: Molecular Multitasking Revealed, Corinne D. Hausmann, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

The accurate synthesis of proteins, dictated by the corresponding nucleotide sequence encoded in mRNA, is essential for cell growth and survival. Central to this process are the aminoacyl-tRNA synthetases (aaRSs), which provide amino acid substrates for the growing polypeptide chain in the form of aminoacyl-tRNAs. The aaRSs are essential for coupling the correct amino acid and tRNA molecules, but are also known to associate in higher order complexes with proteins involved in processes beyond translation. Multiprotein complexes containing aaRSs are found in all three domains of life playing roles in splicing, apoptosis, viral assembly, and regulation of transcription and translation. …


Structural And Functional Mapping Of The Archaeal Multi-Aminoacyl-Trna Synthetase Complex, Corinne D. Hausmann, Michael Ibba Jun 2008

Structural And Functional Mapping Of The Archaeal Multi-Aminoacyl-Trna Synthetase Complex, Corinne D. Hausmann, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Methanothermobacter thermautotrophicus contains a multi-aminoacyl-tRNA synthetase complex (MSC) of LysRS, LeuRS and ProRS. Elongation factor (EF) 1A also associates to the MSC, with LeuRS possibly acting as a core protein. Analysis of the MSC revealed that LysRS and ProRS specifically interact with the idiosyncratic N- and C- termini of LeuRS, respectively. EF-1A instead interacts with the inserted CP1 proofreading domain, consistent with models for post-transfer editing by class I synthetases such as LeuRS. Together with previous genetic data, these findings show that LeuRS plays a central role in mediating interactions within the archaeal MSC by acting as a core scaffolding …