Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Life Sciences

Image-Charge Detection €“ Novel Instrumentation And Applications, Brandon Lee Barney Oct 2015

Image-Charge Detection €“ Novel Instrumentation And Applications, Brandon Lee Barney

Theses and Dissertations

Image-charge detection is an analytical technique in which a highly-charged particle is detected by the magnitude of the image current that it generates in a detecting electrode. This current is represented as a voltage between the charged particle and the sensing electrode. It is a single particle detection method, ideal for the analysis of large, variable mass particles such as biological cells. Some of the physical properties of Bacillus subtilis spores were explored using different applications of image-charge detection. B. subtilis is a gram-negative spore-forming bacteria that has been shown to exhibit extremophile behavior. The particular extremophile behavior that was …


Quantitative And Functional Analysis Pipeline For Label-Free Metaproteomics Data And Its Applications, Lang Ho Lee Aug 2015

Quantitative And Functional Analysis Pipeline For Label-Free Metaproteomics Data And Its Applications, Lang Ho Lee

Doctoral Dissertations

Since the large-scale metaproteome was first reported in 2005, metaproteomics has advanced at a tremendous rate both in its quantitative and qualitative metrics. Furthermore metaproteomics is now being applied as a general tool in microbial ecology in a large variety of environmental studies. Though metaproteomics is becoming a useful and even a standard tool for the microbial ecologist, standardized bioinformatics pipelines are not readily available. Therefore, we developed quantitative and functional analysis pipeline for metaproteomics (QFAM) to help analyze large and complicated metaproteomics data in a robust and timely fashion with outputs designed to be simple and clearly understood by …


Distinguishing Macrophage Activation States By Mass Spectrometry, Matthias Manfred Knust May 2015

Distinguishing Macrophage Activation States By Mass Spectrometry, Matthias Manfred Knust

Graduate Theses and Dissertations

Macrophages are versatile and highly adaptive cells that are involved in a wide range of physiological processes including host defense, homeostasis or regeneration, as well as pathogenesis. They react to their microenvironment, assuming various roles based on chemical and/or physical cues, and can reversibly shift between these so-called activation states. Concurrently, the technique of immunohistochemistry is used to gain spatial information on activated macrophages on tissue sections. The aim of this work was to find mass spectral biomarkers that allow the differentiation of activation states, and establish conditions that can be used in imaging mass spectrometry (IMS) experiments to investigate …


Investigation Into The Biological Importance And Function Of Proinsulin C-Peptide, Christina L. Newsome Jan 2015

Investigation Into The Biological Importance And Function Of Proinsulin C-Peptide, Christina L. Newsome

Theses, Dissertations and Capstones

The C-peptide of insulin was thought to be biologically inactive, but recent studies have shown that the C-peptide causes multiple molecular and physiological effects. Evidence has shown that C-peptide binds to a cell surface receptor, probably a G-protein coupled receptor, and that the COOH-terminal pentapeptide is essential for binding and constitutes an active site. For a further understanding of the detailed nature of the physiological effects of C-peptide, the receptor structure needs to be determined. We designed an affinity column using C-peptide to try and gain a better understanding of the biological effects by examining what proteins the affinity column …