Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology

Fluorescence

Institution
Publication Year
Publication
Publication Type

Articles 1 - 30 of 64

Full-Text Articles in Life Sciences

Synthesis And Biophysical Analysis Of Modified Cell-Penetrating Peptides, Joel Mitchell Jan 2024

Synthesis And Biophysical Analysis Of Modified Cell-Penetrating Peptides, Joel Mitchell

Theses and Dissertations (Comprehensive)

Cell-penetrating peptides (CPPs) are a family of peptides that have the ability to penetrate biological membranes. They were discovered in the late 1980s and have been the topic of many studies. Much of the interest in CPPs has been due to their ability to translocate biological membranes, and the possibility that they could offer a novel drug delivery method by conjugation to biologically active molecules. Linear CPPs can be modified to form cyclic structures. This change in structure has been observed to enhance the stability and penetrative ability of the CPPs which have been studied. The current thesis focuses on …


Binding Interactions Of Biologically Relevant Molecules Studied Using Surface-Modified And Nanostructured Surfaces, Palak Sondhi Nov 2023

Binding Interactions Of Biologically Relevant Molecules Studied Using Surface-Modified And Nanostructured Surfaces, Palak Sondhi

Dissertations

This research focuses on the field of surface nanobioscience, wherein different nanosurfaces that will be used as working electrodes in the electrochemical cell are manufactured and surface modified to understand the critical binding interactions between biologically significant molecules like proteins, carbohydrates, small drug molecules, and glycoproteins. This research is essential if we are to determine whether a synthetic molecule can serve as a therapeutic candidate or diagnose a disease in its early stages. In order to fully understand the binding interactions, the study begins with defining some of the fundamental concepts, principles, and analytical tools for biosensing.

Afterwards, we addressed …


Structural Integrity And Stability Of Dna In Ionic Liquid And Near-Infrared Indolizine Squaraine Dye, Ember Yeji Suh May 2023

Structural Integrity And Stability Of Dna In Ionic Liquid And Near-Infrared Indolizine Squaraine Dye, Ember Yeji Suh

Honors Theses

Luminol, the most common presumptive test for blood at a crime scene, has multiple issues, such as false positive results with chemical agents, no luminescence due to “active oxygen” cleaning agents on bloodstains, and inability to penetrate textile materials. A combination of indolizine squaraine dye and ionic liquid (IL), or Dye Enhanced Textile Emission for Crime Tracking (DETECT), have shown potential to address these issues. The purpose of this study was to assess the binding mechanism of CG (1:1) and SO3SQ dye to HSA and how the mechanism can explain the W214 fluorescence quenching effect and to determine …


Novel Mechanistic Insight Into Ciliary Regulation: Old Pathways Yield New Mechanisms, Larissa L. Dougherty Jan 2023

Novel Mechanistic Insight Into Ciliary Regulation: Old Pathways Yield New Mechanisms, Larissa L. Dougherty

Dartmouth College Ph.D Dissertations

Cilia are structures present on most eukaryotic cells which provide important signaling and motile components to cells from early development to fully differentiated and matured cells. Regulation of these structures is critical to proper functioning of the cell and is known to be tied to the cell cycle. Preparation for ciliary assembly following cell cycle exit and ciliary disassembly following cell cycle reentry requires components throughout the cell body and within the cilium to facilitate this process. Here I identify how the cell adapts to ensure modifications to cilia occur for assembly or disassembly using the model organism Chlamydomonas reinhardtii. …


Continuous Fluorescence-Based Endonuclease-Coupled Dna Methylation Assay To Screen For Dna Methyltransferase Inhibitors, Rebecca Switzer, Katie A. Ward, Jessica Medrano Aug 2022

Continuous Fluorescence-Based Endonuclease-Coupled Dna Methylation Assay To Screen For Dna Methyltransferase Inhibitors, Rebecca Switzer, Katie A. Ward, Jessica Medrano

Faculty Journal Articles

DNA methylation, a form of epigenetic gene regulation, is important for normal cellular function. In cells, proteins called DNA methyltransferases (DNMTs) establish and maintain the DNA methylation pattern. Changes to the normal DNA methylation pattern are linked to cancer development and progression, making DNMTs potential cancer drug targets. Thus, identifying and characterizing novel small molecule inhibitors of these enzymes is of great importance. This paper presents a protocol that can be used to screen for DNA methyltransferase inhibitors. The continuous coupled kinetics assay allows for initial velocities of DNA methylation to be determined in the presence and absence of potential …


Mechanism Of Sila- And Germafluorenes For Biological Applications, Shelby Jarrett Jun 2022

Mechanism Of Sila- And Germafluorenes For Biological Applications, Shelby Jarrett

Dissertations

2,7-disubstituted silafluorenes and germafluorenes, originally designed for OLED applications, are a class of fluorescent dyes that have gained recent interest as probes for bioimaging and as biosensors to monitor cellular dynamics and interactions. Desirable biological probes absorb in the visible region, have high extinction coefficients, high quantum yield and excellent photostability. Here, their spectral properties are investigated under aqueous conditions for relevant biological applications. These molecules display intense blue fluorescence in the solid state and in solution, have high extinction coefficients, and exhibit appreciable solubility in aqueous solution. To better understand potential applications, the mechanism of fluorescence was investigated. It …


Investigation Of The Binding Domain Interfaces Of The C-Terminus Of The Albino3 Insertase And The 43kda Chloroplast Signal Recognition Particle Subunit Via Single Molecule Förster Resonance Energy Transfer, Amanda Tomanek May 2022

Investigation Of The Binding Domain Interfaces Of The C-Terminus Of The Albino3 Insertase And The 43kda Chloroplast Signal Recognition Particle Subunit Via Single Molecule Förster Resonance Energy Transfer, Amanda Tomanek

Chemistry & Biochemistry Undergraduate Honors Theses

Fluorescent labeling is a technique used for visualizing functional groups contained in biomolecules by fluorescence imaging. This technique was used in this project to analyze post-translational targeting of light-harvesting chlorophyll-binding proteins (LHCP), which are the core complexes that harvest sunlight to drive photosynthetic electron transfer. This protein is synthesized in the cytosol and post-translationally targeted to the stroma of chloroplasts. CpSRP43 is a signal recognition particle (SRP) subunit unique to chloroplasts, which has been shown to interact with the stroma-soluble C-terminus of the thylakoid-bound Albino3 insertase (Alb3-Cterm). In the chloroplast stroma, targeting to thylakoids is performed via the cpSRP pathway …


Investigating The Main Protease (Mpro) Of Sars-Cov-2 As A Potential Drug Target, Valerie Giovina Pascetta Jan 2022

Investigating The Main Protease (Mpro) Of Sars-Cov-2 As A Potential Drug Target, Valerie Giovina Pascetta

Honors Theses and Capstones

The rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the coronavirus disease 19 (COVID-19) pandemic has claimed the lives of roughly 6.2 million people worldwide as of May 2022. The virus’s main protease (Mpro ) has been identified as an attractive drug target due to the critical role it plays in the viral life cycle. The roughly 34 kDa Mpro cleaves functional viral polypeptides out of two long polyproteins at conserved cut sites, allowing them to fulfill their role in processes like transcription and replication. Here, we have studied the enzymatic activity …


Part I: Development Of Small-Molecule-Based Probes For The Vitamin D Receptor; Part Ii: Development Of A Scalable Manufacturing Process For Orcein Dye, Tania Roseann Mutchie May 2021

Part I: Development Of Small-Molecule-Based Probes For The Vitamin D Receptor; Part Ii: Development Of A Scalable Manufacturing Process For Orcein Dye, Tania Roseann Mutchie

Theses and Dissertations

PART I:The vitamin D receptor (VDR) is a ligand-dependent transcription factor and member of the nuclear hormone receptor superfamily. VDR is expressed in the epithelia of endocrine organs, digestive system, bronchi, kidneys, and thymus, as well as being present in leukocytes and bone cells. Cell proliferation, cell differentiation, and immunomodulation, along with calcium and phosphate homeostasis, are all processes regulated by the receptor. Within the cell, VDR can be membrane-bound or located in the nucleus. Nuclear localization of VDR transpires following the binding of vitamin D metabolites, the most active of which is 1α,25-dihydroxyvitamin D3 (calcitriol). Within the nucleus, interactions …


Investigation Of G Protein-Coupled Receptor Quaternary Structure Through Fluorescence Micro-Spectroscopy And Theoretical Modeling: Interdependence Between Receptor-Receptor And Receptor-Ligand Interactions, Joel David Paprocki May 2021

Investigation Of G Protein-Coupled Receptor Quaternary Structure Through Fluorescence Micro-Spectroscopy And Theoretical Modeling: Interdependence Between Receptor-Receptor And Receptor-Ligand Interactions, Joel David Paprocki

Theses and Dissertations

Proteins are of high interest in biophysics research due to the important roles they play within cells, such as sensing of chemical (ions and small molecules) and physical (e.g., light) stimuli, providing structure, transporting ions/molecules, signaling, and intercellular communication. The studies described in this dissertation focus on a particular type of membrane proteins known as G protein-coupled receptors (GPCR), which play a key role in cellular response to external stimuli. We used the sterile 2 α-factor mating pheromone receptor (Ste2), a prototypical class D GPCR present within Saccharomyces cerevisiae (baker’s yeast). Ste2 is responsible for initiating the second messenger signal …


Indolizine Donor-Based Dyes For Applications In Fluorescence Biological Imaging, William Meador Mar 2021

Indolizine Donor-Based Dyes For Applications In Fluorescence Biological Imaging, William Meador

Honors Theses

NIR emissive fluorophores are intensely researched due to their potential to replace modern imaging procedures. Many molecular strategies have been employed in the literature to optimize fluorophores for deeper NIR absorption and emission, biocompatibility, and higher fluorescence quantum yields. Amongst the fluorophores studied to date, proaromatic indolizine donors are attractive alternatives to traditional alkyl amine and indoline based donors due to their 1) lower energy absorption and emission facilitated by proaromaticity, 2) large Stokes shifts due to increased dihedral angles about the π-system, 3) ease of functionalization and capacity for bioconjugation at the phenyl ring, and 4) potential for further …


Investigation Of Fluorescence In Selected Mammals Of Arkansas, C. Renn Tumlison, Terry L. Tumlison Jan 2021

Investigation Of Fluorescence In Selected Mammals Of Arkansas, C. Renn Tumlison, Terry L. Tumlison

Journal of the Arkansas Academy of Science

The adaptive value of fluorescence among the vertebrates has been studied most in fishes and birds, and only a few observations have been published regarding fluorescence in the pelage of mammals. Recently, reports of fluorescence in some marsupials, the platypus, and in flying squirrels have become available. We report the occurrence of fluorescent properties in some mammals from Arkansas. Most carnivores, bats, and rodents did not exhibit the property when viewed under UV light. However, opossums, rabbits, a weasel, muskrats, and moles showed substantial UV response, and a few other mammals showed minor fluorescence. Colors fluoresced included pink, green, and …


On The Structure And Function Of Mitochondrial Uncoupling Proteins: The Case Of Ucp2, Afshan Ardalan Jan 2021

On The Structure And Function Of Mitochondrial Uncoupling Proteins: The Case Of Ucp2, Afshan Ardalan

Theses and Dissertations (Comprehensive)

Uncoupling proteins (UCPs) are regulated proton transporters of the mitochondrial inner membrane. UCP-mediated proton leak negatively impacts the rate of ATP synthesis. Despite the importance of their physiological role(s) in certain tissues, molecular aspects of UCPs’ structure-function relationships are not fully understood. The current study explores the tertiary and quaternary structure of UCP2, as well as its proton transport mechanism in lipid membranes. The proteins were expressed in the E. coli inner membrane, purified and reconstituted into liposomes. Proteins were characterized by semi-native SDS-PAGE. Circular dichroism spectroscopy (CD) and fluorescence quenching assays were utilized to study the conformation of proteins …


Origins Of Amyloid Oligomers And Novel Approaches For Their Detection, Jeremy Barton Nov 2020

Origins Of Amyloid Oligomers And Novel Approaches For Their Detection, Jeremy Barton

USF Tampa Graduate Theses and Dissertations

Alzheimer’s disease, type II diabetes, and other amyloid diseases are known to be associated with the formation of amyloid aggregates. It has been thoroughly researched whether amyloid fibrils or oligomers are the main culprit for these diseases, and recent evidence has connected oligomers as the most disease relevant aggregate species. However, many difficulties have arose in confirming this hypothesis. Techniques for oligomer detection are often limited in their sensitivity, and in many cases are unable to distinguish oligomers from rigid fibrils. Additionally, the role oligomer splay in fibril assembly is still unclear, and has led to the belief that different …


Investigatin Actin-Myosin Mechanics To Model Heart Disease Using Fluorescence Microscopy And Optical Trapping, Justin Edward Reynolds May 2020

Investigatin Actin-Myosin Mechanics To Model Heart Disease Using Fluorescence Microscopy And Optical Trapping, Justin Edward Reynolds

Honors Theses

Hypertrophic cardiomyopathy (HCM) is a hereditary disease in which the myocardium becomes hypertrophied, making it more difficult for the heart to pump blood. HCM is commonly caused by a mutation in the β-cardiac myosin II heavy chain. Myosin is a motor protein that facilitates muscle contraction by converting chemical energy from ATP hydrolysis into mechanical work and concomitantly moving along actin filaments. Optical tweezers have been used previously to analyze single myosin biophysical properties; however, myosin does not work as a single unit within the heart. Multiple myosin interacts to displace actin filaments and do not have the same properties …


Laser Surface Cleaning As A Novel Approach For Genesis Solar Wind Collectors, Martina Schmeling, I. V. Veryovkin, C. E. Tripa Jan 2020

Laser Surface Cleaning As A Novel Approach For Genesis Solar Wind Collectors, Martina Schmeling, I. V. Veryovkin, C. E. Tripa

Chemistry: Faculty Publications and Other Works

A new surface cleaning method utilizing lasers has been evaluated for its suitability to Genesis solar wind collectors


Novel Substrate-Free Cholinesterase Based Sensing Of Organophosphorus Compounds, Hailey J. Marini Jan 2020

Novel Substrate-Free Cholinesterase Based Sensing Of Organophosphorus Compounds, Hailey J. Marini

Legacy Theses & Dissertations (2009 - 2024)

The increasing concerns of chemical weapons used by terrorists is growing, creating a need for infield detection methods that can rapidly detect these compounds that are a major health concern for civilians and military personnel. Displacement is a novel concept for the detection of cholinesterase inhibitors, including organophosphorus compounds, that could replace the classical instrumentation methods currently being used for diagnostics.


Autofluorescence To Study The Effects Of Acid Concentration On Cellular Metabolism In Vitro, Robin L. Raley May 2019

Autofluorescence To Study The Effects Of Acid Concentration On Cellular Metabolism In Vitro, Robin L. Raley

Chemistry & Biochemistry Undergraduate Honors Theses

Ultraviolet (UV) radiation-induced sunburns and their accompanying afflictions are a growing public health concern in the United States. There is a need for techniques that can accurately and non-invasively characterize the physiology of sunburned skin tissue directly after UV-damage and applying a topical skin treatment to relieve pain and promote healing. Two-photon excited fluorescence (TPEF) microscopy and fluorescence lifetime imaging (FLIM) can be used to investigate metabolic processes in live cells through endogenous fluorescence of the cofactors, NADH and FAD. These methods employ the optical redox ratio of FAD/(NADH+FAD), mean NADH lifetime, and the separation of the free and bound …


Quantifying Anthropogenic Indicators And Changes In Dissolved Organic Matter In Coastal Urban Aquatic Ecosystems Exposed To High Tidal Flooding, Gonzalo E. Eyzaguirre Apr 2019

Quantifying Anthropogenic Indicators And Changes In Dissolved Organic Matter In Coastal Urban Aquatic Ecosystems Exposed To High Tidal Flooding, Gonzalo E. Eyzaguirre

Department of Biological Sciences

Sea-level rise is causing an increase in tidal flooding in coastal urban areas. Extreme high tides, also known as king tides, are peak tide moments in which tidal amplitude is increased and shallow groundwater flows from the underlying water table are introduced. During tidal flooding in urban areas, accumulated anthropogenic indicators of different water sources are released from groundwater to surface waters, but how these tidal events affect the contributions of different water sources to urban flood waters is uncertain. We quantified tracers of anthropogenic origin including fluoride, fecal coliform bacteria, as well as dissolved organic carbon (DOC) concentrations and …


Effects Of Electrical Stimulation On Glioma Cells In Vitro With Implications For Treating Chronic Pain: Development Of A Model System, David C. Platt Apr 2019

Effects Of Electrical Stimulation On Glioma Cells In Vitro With Implications For Treating Chronic Pain: Development Of A Model System, David C. Platt

Theses and Dissertations

Glial cells comprise over 70% of the central nervous system cells and exhibit diverse functions including regulation of synaptic transmission, neuron protection/repair, maintenance of neuronal metabolism, and are implicated in the development of persistent neuropathic pain. In addition, a perturbation in the concentration of intracellular reactive oxygen species (ROS) and reactive nitrogen species (RNS) has likewise been associated with the development of a chronic pain state. This perturbation in ROS/RNS creates an environment of oxidative stress. However, the mechanism by which the pain signal transmission is modulated, and the roles ROS play in the perpetuation of the pain state are …


L-Tryptophan Adsorption Differentially Changes The Optical Behaviour Of Pseudo-Enantiomeric Cysteine-Functionalized Quantum Dots: Towards Chiral Fluorescent Biosensors, Faezeh Askari, Abbas Rahdar, John F. Trant Feb 2019

L-Tryptophan Adsorption Differentially Changes The Optical Behaviour Of Pseudo-Enantiomeric Cysteine-Functionalized Quantum Dots: Towards Chiral Fluorescent Biosensors, Faezeh Askari, Abbas Rahdar, John F. Trant

Chemistry and Biochemistry Publications

Water-soluble chiral graphene quantum dots (GQDs) with a strong blue emission were synthesized by covalently immobilizing l-cysteine or d-cysteine onto the GQDs. Either the amine or the thiol group of cysteine was used to make the bond through amide coupling or thiol-ene click chemistry respectively. The functionalized chiral GQDs were the characterized by FT-IR and UV–vis. The enantiomeric pairs exhibit equal but opposite bands in circular dichroism spectra suggesting that there is no difference in the efficacy of conjugation. The fluorescent response of these chiral GQDs when exposed to l-tryptophan was then studied. The fluorescence of the amide-conjugated GQDs was …


Cloning The Vision Related G Protein Transducin For Live Cell Fluorescence Studies, Deanna M. Bowman Jan 2019

Cloning The Vision Related G Protein Transducin For Live Cell Fluorescence Studies, Deanna M. Bowman

Williams Honors College, Honors Research Projects

G coupled protein receptors (GCPR) are one of the largest families of receptors and mediate a variety of biological responses. Rhodopsin is the largest family and aids in sight, the α-subunit of the GCPR complex in extremely important to the activation and downstream signaling effects of GCPR. The α-subunit contains a small trans-domain portion and in this project the sequence of that portion will be inserted into a vector containing a fluorescent tag. These vectors will then be used to collect fluorescent cross correlation spectroscopy or FCCS data. The unit was cloned using assembly methods that include PCR and purification …


Significance Of Rna 2'-5' Linkage And Metal-Ion Mediated Base Pairs, Fusheng Shen Jan 2019

Significance Of Rna 2'-5' Linkage And Metal-Ion Mediated Base Pairs, Fusheng Shen

Legacy Theses & Dissertations (2009 - 2024)

It has been known that the template-directed RNA chemical replication reaction produces mixture of backbones containing both 3’-5’ and 2’-5’ linkages. This backbone heterogeneity has been a significant problem in studying the emergence of RNA World from the prebiotic chemistry. However, very recently, it is reported that FMN binding aptamer and a hammerhead ribozyme are still able to retain considerable functions in the presence of certain 2’-5’ linkages, indicating that RNA backbones may be quite flexible and this backbone heterogeneity problem may not be as severe as originally thought. This finding also brings two related important questions: First, how does …


Harnessing The Physical Properties Of Zno Nanoparticles For Biological Applications And Factors That Impact Zno Nanoparticle Toxicity, Joshua Eixenberger Dec 2018

Harnessing The Physical Properties Of Zno Nanoparticles For Biological Applications And Factors That Impact Zno Nanoparticle Toxicity, Joshua Eixenberger

Boise State University Theses and Dissertations

The production of materials at the nanoscale leads to novel properties and has made the field of nanotechnology a part of everyday life. Numerous applications of nanomaterials have led to their use in electronics, optics, and medicine. However, creating materials at such a small size brings them on the same scale as many biomolecules and cellular components, altering their interactions with biological systems. This can lead to unintended biological impacts as many nanomaterials are considerably more toxic than their bulk counterpart material. ZnO nanoparticles (nZnO) are particularly interesting in this context. The FDA classifies ZnO as a generally recognized as …


Aptamer-Based Assay For Detection Of Ochratoxin A, Amanda Nicole Bartley Nov 2018

Aptamer-Based Assay For Detection Of Ochratoxin A, Amanda Nicole Bartley

FIU Electronic Theses and Dissertations

Ochratoxin A (OTA) is a potent mycotoxin found in a wide range of agricultural products that has been linked to mitochondrial damage and renal disease. The standard methods for OTA analysis currently rely on the use of high-performance liquid chromatography (HPLC) coupled to fluorescence detection or mass spectrometry. Toward a highthroughput analysis of OTA, a single-stranded DNA aptamer, modified with a fluorophore, coupled to a complementary sequence, modified with a FRET-based quencher that dissociates in the presence of the target toxin, is proposed. In order to integrate “target trapping,” aptamer immobilization methods were explored to mediate interference issues. Assays were …


Fluorescently Labeled Sirnas And Their Theranostic Applications In Cancer Gene Therapy, Stephen David Kozuch Aug 2018

Fluorescently Labeled Sirnas And Their Theranostic Applications In Cancer Gene Therapy, Stephen David Kozuch

Seton Hall University Dissertations and Theses (ETDs)

Gene therapy has emerged as a promising precision nano-medicine strategy in the treatment of numerous diseases including cancer. At the forefront of its utility are the applications of short-interfering RNA (siRNA), that silence oncogenic mRNA expression leading to cancer cell death through the RNA interference (RNAi) pathway. Despite the therapeutic potential, siRNAs are limited by poor pharmacological properties, which has hindered their translation into the clinic. Recent studies, however, have highlighted the applications of modified siRNAs, including the use of fluorescent probes and siRNA nanostructures in cancer detection and treatment. The siRNAs reported in this thesis are designed to target …


Fluorescent Probes And Functionalized Nanoparticles For Bioimaging: Synthesis, Photophysical Properties And Applications, Xinglei Liu May 2018

Fluorescent Probes And Functionalized Nanoparticles For Bioimaging: Synthesis, Photophysical Properties And Applications, Xinglei Liu

Dissertations

The development of new organic molecular probes with excellent photophysical properties and high fluorescence quantum yields is of considerable interest to many research areas including one- and two-photon fluorescence microscopy, fluorescence-based sensing methodologies, and cancer therapy. Series of organic linear-/non-linear optical molecules including squaraine derivatives, and fluorene derivatives as well as other bioconjugates are designed and synthesized during the doctoral study for the aim of ion detection (Chapter 5), photo dynamic therapy, and deep-tissue imaging (Chapter 4). These optical probes are capable of absorbing light in the near infrared (NIR) window and thus have deeper penetration and cause less photodamage …


Role Of Cationic Side Chains In The Antimicrobial Activity Of C18g., Eric M Kohn, David J Shirley, Lubov Arotsky, Angela M Picciano, Zachary Ridgway, Michael W Urban, Benjamin Carone, Gregory Caputo Feb 2018

Role Of Cationic Side Chains In The Antimicrobial Activity Of C18g., Eric M Kohn, David J Shirley, Lubov Arotsky, Angela M Picciano, Zachary Ridgway, Michael W Urban, Benjamin Carone, Gregory Caputo

Faculty Scholarship for the College of Science & Mathematics

Antimicrobial peptides (AMPs) have been an area of great interest, due to the high selectivity of these molecules toward bacterial targets over host cells and the limited development of bacterial resistance to these molecules throughout evolution. The peptide C18G has been shown to be a selective, broad spectrum AMP with a net +8 cationic charge from seven lysine residues in the sequence. In this work, the cationic Lys residues were replaced with other natural or non-proteinogenic cationic amino acids: arginine, histidine, ornithine, or diaminopropionic acid. These changes vary in the structure of the amino acid side chain, the identity of …


Organelle-Specific Single-Molecule Imaging Of Α4Β2 Nicotinic Receptors Reveals The Effect Of Nicotine On Receptor Assembly And Cell-Surface Trafficking, Ashley M. Fox-Lee, Faruk H. Moonschi, Christopher I. Richards Oct 2017

Organelle-Specific Single-Molecule Imaging Of Α4Β2 Nicotinic Receptors Reveals The Effect Of Nicotine On Receptor Assembly And Cell-Surface Trafficking, Ashley M. Fox-Lee, Faruk H. Moonschi, Christopher I. Richards

Chemistry Faculty Publications

Nicotinic acetylcholine receptors (nAChRs) assemble in the endoplasmic reticulum (ER) and traffic to the cell surface as pentamers composed of α and β subunits. Many nAChR subtypes can assemble with varying subunit ratios, giving rise to multiple stoichiometries exhibiting different subcellular localization and functional properties. In addition to the endogenous neurotransmitter acetylcholine, nicotine also binds and activates nAChRs and influences their trafficking and expression on the cell surface. Currently, no available technique can specifically elucidate the stoichiometry of nAChRs in the ER versus those in the plasma membrane. Here, we report a method involving single-molecule fluorescence measurements to determine the …


Real-Time Sensing Of Single-Ligand Delivery With Nanoaperture-Integrated Microfluidic Devices, W. Elliott Martin, Ning Ge, Bernadeta R. Srijanto, Emily Furnish, C. Patrick Collier, Christine A. Trinkle, Christopher I. Richards Jul 2017

Real-Time Sensing Of Single-Ligand Delivery With Nanoaperture-Integrated Microfluidic Devices, W. Elliott Martin, Ning Ge, Bernadeta R. Srijanto, Emily Furnish, C. Patrick Collier, Christine A. Trinkle, Christopher I. Richards

Chemistry Faculty Publications

The measurement of biological events on the surface of live cells at the single-molecule level is complicated by several factors including high protein densities that are incompatible with single-molecule imaging, cellular autofluorescence, and protein mobility on the cell surface. Here, we fabricated a device composed of an array of nanoscale apertures coupled with a microfluidic delivery system to quantify single-ligand interactions with proteins on the cell surface. We cultured live cells directly on the device and isolated individual epidermal growth factor receptors (EGFRs) in the apertures while delivering fluorescently labeled epidermal growth factor. We observed single ligands binding to EGFRs, …