Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 18 of 18

Full-Text Articles in Life Sciences

Understanding The Role Of Charge On Particle Transport Within Semidilute And Concentrated Biopolymer Solutions And Tau Protein Condensates, Kanthi Nuti Jan 2021

Understanding The Role Of Charge On Particle Transport Within Semidilute And Concentrated Biopolymer Solutions And Tau Protein Condensates, Kanthi Nuti

Theses and Dissertations--Chemistry

Biological polymer networks such as mucus, extracellular matrix, nuclear pore complex, and bacterial biofilms, play a critical role in governing the transport of nutrients, biomolecules and particles within cells and tissues. The interactions between particle and polymer chains are responsible for effective selective filtering of particles within these macromolecular networks. This selective filtering is not dictated by steric alone but must use additional interactions such electrostatics, hydrophobic and hydrodynamic effects to control particle transport within biogels. Depending on chemical composition and desired function, biogels use selective filtering to allow some particles to permeate while preventing others from penetrating the biogel. …


Analytic Solutions For Diffusion On Path Graphs And Its Application To The Modeling Of The Evolution Of Electrically Indiscernible Conformational States Of Lysenin, K. Summer Ware Dec 2020

Analytic Solutions For Diffusion On Path Graphs And Its Application To The Modeling Of The Evolution Of Electrically Indiscernible Conformational States Of Lysenin, K. Summer Ware

Boise State University Theses and Dissertations

Memory is traditionally thought of as a biological function of the brain. In recent years, however, researchers have found that some stimuli-responsive molecules exhibit memory-like behavior manifested as history-dependent hysteresis in response to external excitations. One example is lysenin, a pore-forming toxin found naturally in the coelomic fluid of the common earthworm Eisenia fetida. When reconstituted into a bilayer lipid membrane, this unassuming toxin undergoes conformational changes in response to applied voltages. However, lysenin is able to "remember" past history by adjusting its conformational state based not only on the amplitude of the stimulus but also on its previous …


Hyaluronan At The Brain-Environment Interface, Donald M. Thevalingam Sep 2019

Hyaluronan At The Brain-Environment Interface, Donald M. Thevalingam

Dissertations, Theses, and Capstone Projects

Hyaluronan (HA; Hyaluronic Acid), a primary scaffolding component of the brain extracellular matrix, serves as an integral structural component to the brain extracellular space (ECS). The fossorial African naked mole-rat (Heterocephalus glaber; NM-R), a mammal which lives in a low-oxygen environment and is capable of tolerating hypoxia and hypercapnia, has been shown to synthesize and sustain a unique high-molecular-mass variant of hyaluronan macromolecule (HMM-HA). This body of work highlights HA’s role in mediating the interplay between brain ECM composition, ECS structure, and cell viability.

Here we employ the NM-R as a unique animal model to observe the role of the …


Force Requirements And Force Generation During Endocytosis In Yeast, Jonah Kyle Scher-Zagier Aug 2019

Force Requirements And Force Generation During Endocytosis In Yeast, Jonah Kyle Scher-Zagier

Arts & Sciences Electronic Theses and Dissertations

Endocytosis is a process by which cells bring external materials into the intracellular environment and perform other essential biological functions. The main drivers of endocytosis include clathrin and actin, which help shape the membrane and form the endocytic invagination. In mammalian cells and other cells lacking a wall, the primary barriers to endocytosis are the bending rigidity of the cell membrane and surface tension. However, in cells with a rigid cell wall, such as those of yeast, this process is opposed by a substantial pressure within the cell, known as the turgor pressure, which is generated by a difference in …


Multi-Scale Computational Studies Of Calcium (Ca2+) Signaling, Bin Sun Jan 2019

Multi-Scale Computational Studies Of Calcium (Ca2+) Signaling, Bin Sun

Theses and Dissertations--Chemistry

Ca2+ is an important messenger that affects almost all cellular processes. Ca2+ signaling involves events that happen at various time-scales such as Ca2+ diffusion, trans-membrane Ca2+ transport and Ca2+-mediated protein-protein interactions. In this work, we utilized multi-scale computational methods to quantitatively characterize Ca2+ diffusion efficiency, Ca2+ binding thermodynamics and molecular bases of Ca2+-dependent protein-protein interaction. Specifically, we studied 1) the electrokinetic transport of Ca2+ in confined sub-µm geometry with complicated surfacial properties. We characterized the effective diffusion constant of Ca2+ in a cell-like environment, which helps to understand …


Transport Of Charged Small Molecules After Electropermeabilization - Drift And Diffusion, Esin B. Sözer, C. Florencia Pocetti, P. Thomas Vernier Jan 2018

Transport Of Charged Small Molecules After Electropermeabilization - Drift And Diffusion, Esin B. Sözer, C. Florencia Pocetti, P. Thomas Vernier

Bioelectrics Publications

Background: Applications of electric-field-induced permeabilization of cells range from cancer therapy to wastewater treatment. A unified understanding of the underlying mechanisms of membrane electropermeabilization, however, has not been achieved. Protocols are empirical, and models are descriptive rather than predictive, which hampers the optimization and expansion of electroporation-based technologies. A common feature of existing models is the assumption that the permeabilized membrane is passive, and that transport through it is entirely diffusive. To demonstrate the necessity to go beyond that assumption, we present here a quantitative analysis of the post-permeabilization transport of three small molecules commonly used in electroporation research-YO-PRO-1, propidium, …


Session C-1: Modeling Stem Activities Into Classroom Practice, Sowmya Anjur Mar 2017

Session C-1: Modeling Stem Activities Into Classroom Practice, Sowmya Anjur

Professional Learning Day

Students understand concepts better when they have had a chance to work hands on with relevant material. Examples will be presented from my classroom where difficult concepts have been modeled into simple experiments with considerable success in enhancing student understanding. Special focus will be given to selected topics that students seem to have the most difficulty grasping. The objective is to enable students to transfer their understanding to solve complex problems with considerable ease and apply their understanding to real world scenarios on assessments. Suggestions will also be provided for implementation of various concepts into the high school classroom.


Gelatin Diffusion Experiment, Jennifer Welborn Jan 2015

Gelatin Diffusion Experiment, Jennifer Welborn

Nanotechnology Teacher Summer Institutes

In this activity, nanotech participants will:

- See how food dyes and gelatin are used to model the delivery of nanoscale medicines to cells in the human body - Measure diffusion distances of 3 different colors of food dye by: Eye, photo image on a computer, ADI software (Analyzing Digital Images) Some useful websites:


Nanoparticle Behavior In Biological Gels And Biofluids: The Impact Of Interactions With Charged Biogels And The Formation Of Protein Coronas On Nanoparticles, Xiaolu Zhang Jan 2015

Nanoparticle Behavior In Biological Gels And Biofluids: The Impact Of Interactions With Charged Biogels And The Formation Of Protein Coronas On Nanoparticles, Xiaolu Zhang

Theses and Dissertations--Chemistry

With the rapid growth of nanotechnology, situations where nanomaterials will interact with biological systems will unquestionably grow. Therefore, it is increasingly understood that interactions between nanomaterials and biological environments will play an essential role in nanomedicine. Biological polymer networks, including mucus and the extracellular matrix, serve as a filter for the exchange of molecules and nanoparticles. Such polymer networks are complex and heterogeneous hydrogel environments that regulate transport processes through finely tuned particle-network interactions. In chapters 3 and 4, we investigate the role of electrostatics on the basic mechanisms governing the diffusion of charged molecules inside model polymer networks by …


Heterogeneous Rotational Diffusion Of A Fluorescent Probe In Lipid Monolayers, Christina M. Othon Aug 2014

Heterogeneous Rotational Diffusion Of A Fluorescent Probe In Lipid Monolayers, Christina M. Othon

Christina M Othon

The rotational correlation time of the lipid probe 1-palmitoyl-2-{6-[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino]hexanoyl}-sn-glycero-3-phosphocholine (NBD-PC) is measured using fluorescence anisotropy for two lipid species. We measure the rotational diffusion in a monolayer of 1,2-Didecanoyl-sn-glycero-3-phosphocholine (DPPC) which displays a phase transition at room temperature from the liquid expanded to the liquid-condensed phase. The constant rotational diffusion of the probe throughout the phase transition reflects the measurement of dynamics in only the liquid-expanded phase. We contrast the dynamic changes during this phase coexistence to the continuous density increase observed in 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) at room temperature. We observe a non-exponential decay of the probe diffusion consistent with heterogeneity …


Septin Assemblies Form By Diffusion-Driven Annealing On Membranes, Andrew A. Bridges, Huaiying Zhang, Shalin B. Mehta, Patricia Occhipinti, Tomomi Tani, Amy S. Gladfelter Feb 2014

Septin Assemblies Form By Diffusion-Driven Annealing On Membranes, Andrew A. Bridges, Huaiying Zhang, Shalin B. Mehta, Patricia Occhipinti, Tomomi Tani, Amy S. Gladfelter

Dartmouth Scholarship

Septins assemble into filaments and higher-order structures that act as scaffolds for diverse cell functions including cytokinesis, cell polarity, and membrane remodeling. Despite their conserved role in cell organization, little is known about how septin filaments elongate and are knitted together into higher-order assemblies. Using fluorescence correlation spectroscopy, we determined that cytosolic septins are in small complexes, suggesting that septin filaments are not formed in the cytosol. When the plasma membrane of live cells is monitored by total internal reflection fluorescence microscopy, we see that septin complexes of variable size diffuse in two dimensions. Diffusing septin complexes collide and make …


Development Of A Biosensor For Investigating Membrane Curvature Sorting, Joshua C. Black Nov 2013

Development Of A Biosensor For Investigating Membrane Curvature Sorting, Joshua C. Black

Electronic Theses and Dissertations

The physical structure of cellular membranes plays a critical role in lipid and protein sorting. A novel biosensor was developed to probe the influence of curvature on sorting. This biosensor mimics large, two-dimensional membranes in dynamic equilibrium, achieves high spatial resolution between curvature and molecules of interest, and has high sensitivity, enough for single particle detection. The biosensor consists of continuous supported lipid bilayer formed over nanoparticles (40 to 200 nm diameter) deposited on a glass substrate. The nanoparticles determine the extent of curvature. This biosensor is the first to observe large-scale 2-dimensional diffusion of biomolecules on a supported lipid …


Pten Enters The Nucleus By Diffusion, Fenghua Liu, Stefan Wagner, Robert Campbell, Jeffrey Nickerson, Celia Schiffer, Alonzo Ross Nov 2011

Pten Enters The Nucleus By Diffusion, Fenghua Liu, Stefan Wagner, Robert Campbell, Jeffrey Nickerson, Celia Schiffer, Alonzo Ross

Celia A. Schiffer

Despite much evidence for phosphatidylinositol phosphate (PIP)-triggered signaling pathways in the nucleus, there is little understanding of how the levels and activities of these proteins are regulated. As a first step to elucidating this problem, we determined whether phosphatase and tensin homolog deleted on chromosome 10 (PTEN) enters the nucleus by passive diffusion or active transport. We expressed various PTEN fusion proteins in tsBN2, HeLa, LNCaP, and U87MG cells and determined that the largest PTEN fusion proteins showed little or no nuclear localization. Because diffusion through nuclear pores is limited to proteins of 60,000 Da or less, this suggests that …


Accessibility And Order Of Water Sites In And Around Proteins: A Crystallographic Time-Averaging Study, Celia Schiffer, Wilfred Van Gunsteren Nov 2011

Accessibility And Order Of Water Sites In And Around Proteins: A Crystallographic Time-Averaging Study, Celia Schiffer, Wilfred Van Gunsteren

Celia A. Schiffer

Water plays an essential role in most biological processes. Water molecules solvating biomolecules are generally in fast exchange with the environment. Nevertheless, well-defined electron density is seen for water associated with proteins whose crystal structure is determined to high resolution. The relative accessibility of these water sites is likely to be relevant to their biological role but is difficult to assess. A time-averaging crystallographic refinement simulation on basic pancreatic trypsin inhibitor successfully characterizes the relative accessibility of the crystallographic water sites. In such a refinement simulation water diffuses through the crystal lattice in a manner that is consistent with the …


Influence Of Functionalized Fullerene Structure On Polymer Photovoltaic Degradation, Brian H. Johnson, Enaanake Allagoa, Robert L. Thomas, Gregory Stettler, Marianne Wallis, Justn H. Peel, Thorsteinn Adalsteinsson, Brian J. Mcnelis, Richard P. Barber Jr. Mar 2010

Influence Of Functionalized Fullerene Structure On Polymer Photovoltaic Degradation, Brian H. Johnson, Enaanake Allagoa, Robert L. Thomas, Gregory Stettler, Marianne Wallis, Justn H. Peel, Thorsteinn Adalsteinsson, Brian J. Mcnelis, Richard P. Barber Jr.

Physics

The time dependence of device performance has been measured for photocells using blends containing the conjugated polymer, poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) with two different functionalized C60 electron acceptor molecules: commercially available [6,6]-phenyl C61 butyric acid methyl ester (PCBM) or [6,6]-phenyl C61 butyric acid octadecyl ester (PCBOD) produced in this laboratory. Performance was characterized by the short-circuit current output of the devices, with the time dependence of PCBM samples typically degrading exponentially. Variations in the characteristic lifetime of the devices were observed to depend on the molar fraction of the electron acceptor molecules (calculated with respect to the MEH-PPV monomer fraction). In comparison …


Frustrated Drift Of An Anchored Scroll-Wave Filament And The Geodesic Principle, Marcel Wellner, Christian W. Zemlin, Arkady M. Pertsov Jan 2010

Frustrated Drift Of An Anchored Scroll-Wave Filament And The Geodesic Principle, Marcel Wellner, Christian W. Zemlin, Arkady M. Pertsov

Bioelectrics Publications

We investigate anchored scroll-wave filaments in an excitable medium whose diffusivity matrix, including its determinant, is spatially nonuniform. The study is motivated by cardiological applications where scroll-wave behavior in the presence of diffusivity gradients is believed to play an important role in the development of severe arrhythmias. A diffusivity gradient is expected to make the filament drift, unless drift is prevented ("frustrated") by anchoring to localized defects in the propagation medium. The resulting stationary filament is a geodesic curve, as demonstrated here in the case of a nonzero but constant gradient. That is, the diffusivity matrix has a determinant that …


In Vivo Imaging Of Transport And Biocompatibility Of Single Silver Nanoparticles In Early Development Of Zebrafish Embryos, Kerry J. Lee, Prakash D. Nallathamby, Lauren M. Browning, Christopher J. Osgood, Xiao-Hong Nancy Xu Jan 2007

In Vivo Imaging Of Transport And Biocompatibility Of Single Silver Nanoparticles In Early Development Of Zebrafish Embryos, Kerry J. Lee, Prakash D. Nallathamby, Lauren M. Browning, Christopher J. Osgood, Xiao-Hong Nancy Xu

Chemistry & Biochemistry Faculty Publications

Real-time study of the transport and biocompatibility of nanomaterials in early embryonic development at single-nanoparticle resolution can offer new knowledge about the delivery and effects of nanomaterials in vivo, and provide new insights into molecular transport mechanisms in developing embryos. In this study, we directly characterized the transport of single silver nanoparticles into an in vivo model system (zebrafish embryos) and investigated their effects on early embryonic development at single-nanoparticle resolution in real time. We designed highly purified and stable (not aggregated and no photodecomposition) nanoparticles and developed single-nanoparticle optics and in vivo assays to enable the study. We …


A Comparison Of The Rough Sphere Rotational Diffusion Model With Experimental Results For Liquid Methyl Iodide, Dane R. Jones, Scott L. Whittenburg, C. H. Wang Sep 1976

A Comparison Of The Rough Sphere Rotational Diffusion Model With Experimental Results For Liquid Methyl Iodide, Dane R. Jones, Scott L. Whittenburg, C. H. Wang

Chemistry and Biochemistry Faculty Publications

No abstract available.