Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology

Chromatin

Legacy Theses & Dissertations (2009 - 2024)

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Chromatin-Signaling Axis Orchestrates The Formation Of Germline Stem Cell Differentiation Niche In Drosophila, Maitreyi Upadhyay Jan 2018

Chromatin-Signaling Axis Orchestrates The Formation Of Germline Stem Cell Differentiation Niche In Drosophila, Maitreyi Upadhyay

Legacy Theses & Dissertations (2009 - 2024)

Stem cells have the unique capability of self-renewing into stem cells and differentiating into several terminal cell types. Loss of either of these processes can lead to aging, progression towards degenerative diseases and cancers. Insight into how self-renewal and differentiation are regulated will have tremendous therapeutic impact. Drosophila is an excellent model system for stem cell study due to the availability of various mutants, markers and RNAi technology. In order to study stem cell biology, we use female Drosophila gonads, whose stem cell population – the germline stem cells (GSCs) gives rise to gametes.


The Role Of Chromatin And Cofactors In The Transcriptional Memory Effect Exerted In Saccharomyces Cerevisiae, Emily Leigh Paul Jan 2012

The Role Of Chromatin And Cofactors In The Transcriptional Memory Effect Exerted In Saccharomyces Cerevisiae, Emily Leigh Paul

Legacy Theses & Dissertations (2009 - 2024)

Abf1 and Rap1 are functionally similar general regulatory factors (GRFs) found in Saccharomyces cerevisiae . Abf1, in its role as a transcriptional activator, exerts a memory effect on some genes under its control. This effect results in transcription levels remaining steady when Abf1 dissociates from its binding site in a conditional mutant. In contrast, Rap1 fails to elicit the same effect on its regulatory targets. Transcriptional memory effects have been observed in many fields of study, including immunology, cancer, and stem cells, and conservation of transcription machinery will allow studies in yeast to be applied to higher organisms.