Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology

Chromatin

University of South Florida

Articles 1 - 3 of 3

Full-Text Articles in Life Sciences

Functional Analysis Of The Replication Fork Proteome Identifies Bet Proteins As Pcna Regulators, Sarah R. Wessel, Kareem N. Mohni, Jessica W. Luzwick, Huzefa Dungrawala, David Cortez Jan 2019

Functional Analysis Of The Replication Fork Proteome Identifies Bet Proteins As Pcna Regulators, Sarah R. Wessel, Kareem N. Mohni, Jessica W. Luzwick, Huzefa Dungrawala, David Cortez

Molecular Biosciences Faculty Publications

Identifying proteins that function at replication forks is essential to understanding DNA replication, chromatin assembly, and replication-coupled DNA repair mechanisms. Combining quantitative mass spectrometry in multiple cell types with stringent statistical cutoffs, we generated a high-confidence catalog of 593 proteins that are enriched at replication forks and nascent chromatin. Loss-of-function genetic analyses indicate that 85% yield phenotypes that are consistent with activities in DNA and chromatin replication or already have described functions in these processes. We illustrate the value of this resource by identifying activities of the BET family proteins BRD2, BRD3, and BRD4 in controlling DNA replication. These proteins …


Identification Of Proteins At Active, Stalled, And Collapsed Replication Forks Using Isolation Of Proteins On Nascent Dna (Ipond) Coupled With Mass Spectrometry, Bianca M. Sirbu, W. Hayes Mcdonald, Huzefa Dungrawala, Akosua Badu-Nkansah, Gina M. Kavanaugh, Yaoyi Chen, David L. Tabb, David Cortez Jan 2013

Identification Of Proteins At Active, Stalled, And Collapsed Replication Forks Using Isolation Of Proteins On Nascent Dna (Ipond) Coupled With Mass Spectrometry, Bianca M. Sirbu, W. Hayes Mcdonald, Huzefa Dungrawala, Akosua Badu-Nkansah, Gina M. Kavanaugh, Yaoyi Chen, David L. Tabb, David Cortez

Molecular Biosciences Faculty Publications

Both DNA and chromatin need to be duplicated during each cell division cycle. Replication happens in the context of defects in the DNA template and other forms of replication stress that present challenges to both genetic and epigenetic inheritance. The replication machinery is highly regulated by replication stress responses to accomplish this goal. To identify important replication and stress response proteins, we combined isolation of proteins on nascent DNA (iPOND) with quantitative mass spectrometry. We identified 290 proteins enriched on newly replicated DNA at active, stalled, and collapsed replication forks. Approximately 16% of these proteins are known replication or DNA …


Novel Roles For The Transcriptional Repressor Prdm1 In Human Natural Killer Cells And Identification Of An Inhibitor Of Its Interacting Methyltransferase G9a, Matthew Adams Smith Jan 2011

Novel Roles For The Transcriptional Repressor Prdm1 In Human Natural Killer Cells And Identification Of An Inhibitor Of Its Interacting Methyltransferase G9a, Matthew Adams Smith

USF Tampa Graduate Theses and Dissertations

The studies presented within this dissertation provide the first description of PRDM1 (also known as Blimp-1 or PRDI-BF1) function in natural killer cells. NK cells are major effectors of the innate immune response via antigen-independent cytotoxicity and link to the adaptive immune response through cytokine release. Molecular mechanisms mediating NK activation are relatively well-studied; however, much less is known about the mechanisms that restrain activation.

In the first study, the transcriptional repressor PRDM1 is shown to be a critical negative regulator of NK function. Microarray analysis was used to characterize transcriptional changes associated with cytokine-mediated activation. PRDM1 is expressed at …